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ABSTRACT. The motivations of studying symmetry groups arise from understanding repetitive pat-
terns in visual arts and architecture. There were significantly many discoveries about symmetry in
the 19th century, one of which is the theorem of 17 plane symmetries. This paper discusses a special
type of symmetry group —wallpaper groups. We will study wallpaper symmetries, prove the 17
plane symmetries with Conway’s magic theorem and meanwhile bring in the application of symme-
try in constructing wallpaper patterns. The study of symmetry is a core part of group theory, and it
also talks with geometry, linear algebra and even architectural arts. In particular, the involvement
of wallpaper patterns makes this topic appealing to a wide variety of readers; but the underlying
mathematical theory will certainly spark the interest of students in mathematics. Many mathemati-
cal research fields involve symmetry groups: Lie group, combinatorial graph, molecular symmetry,
quantum mechanics, etc.

1. SYMMETRY GROUPS

Symmetry in our mathematical studies is referred to as isometry. It can be in all dimensions, but
for the sake of visualization, we are most interested in isometry of two dimensions.

Definition 1 (Isometry). An isometry of n−dimensional space Rn is a function from Rn to Rn that
preserves distance.

Whenever we talk about symmetry groups, we should understand that the set of all isometries
defined as the above is indeed a group. Let us show that.

Theorem 2. The set of all isometries in F ⊂ Rn is a group under function composition.

Proof. Let G be the set of all isometries in Rn that map F onto itself.

(1) G is closed under the function composition.
For any T1, T2 ∈ G and any x, y ∈ F , ‖T2 ◦ T1(x) − T2 ◦ T1(x)‖ = ‖T1(x) − T1(y)‖ =
‖x− y‖. So the composition of two symmetry functions are still in G.

(2) Identity.
It is clear that T (x) = x;F → F is the identity function.

(3) Associativity
We can take it for granted that function composition is always associative.

(4) Inverse.
By definition ofG, ∀T ∈ G, T is onto. Also notice that if T (x) = T (y) for some x, y ∈ F ,
0 = ‖T (x)−T (y)‖ = ‖x−y‖, which implies x = y. That is to say, T is one-to-one. Now,
T is bijective in F , so its inverse T−1 exists. Moreover, ∀ y1, y2 ∈ F , ∃x1, x2 ∈ F such
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that T (x1) = y1 and T (x2) = y2, so ‖T−1(y1)−T−1(y2)‖ = ‖T−1◦T (x1)−T−1◦T (x2)‖ =
‖x1 − x2‖ = ‖y1 − y2‖, which verified T−1 ∈ G.

In conclusion, the set G defined above is a group. �

This leads to the following definition:

Definition 3 (Symmetry groups in Rn). Let F ⊂ Rn, then the symmetry group of F is the set of
all isometries of Rn that map F onto itself with the group operation function composition.

We have already seen some simple symmetry groups in class, such as the dihedral groupDn, which
describes the symmetry groups of a regular polygon in two-dimensional space. We examined their
properties by Cayley’s table. And now with an introduction to symmetry groups in general, we are
able to claim the following.

1. Symmetry on a plane. The symmetry groups on a plane R2 are easier to grasp than higher
dimensions. It has been well known that rotation, reflection, translation and glide-reflection are the
four classes of isometries in R2. It will be interesting to study those four operations pointwisely
by algebraic functions, so we will do that now (p 3-5, [3]).

Translation. Translation is an operation that has no fixed points and that moves every point to-
wards a certain direction with a certain distance (see Fig 1a). Let Tv(u) : R2 → R2 denote the
function of translation, where u ∈ R2 and v ∈ R2 be the translation vector. So Tv(u) = u + v,
which is analogous to vector addition in R2. A translation is said to be nontrivial if v 6= 0, ie, not
the identity map.

we can check that such translation is an isometry. Given u1, u2 ∈ R2 and a translation function
Tv(u), ‖Tv(u1) − Tv(u2)‖ = ‖(u1 + v) − (u2 + v)‖ = ‖u1 − u2‖. So translation is distance-
preserving.

Also, the set of all translations under function composition is an infinite subgroup of the symmetry
group on R2. The inverse of Tv is T−v; it is closed since Tv2 ◦ Tv1 = Tv1+v2 . Moreover, the group
is infinite because T nv 6= T0 for any n ≥ 1.

(a) translation (b) reflection

Figure 1. Translation and reflection
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Reflection. A reflection fixes all the points on a mirror line, and maps all the other points across
that line (see Fig 1b). A reflection has an order of 2, so it is its own inverse. Let’s call the reflection
function Ll(u) : R2 → R2, where l ∈ R2 is the mirror line.

Suppose the standard form l is ax+ by+ c = 0, where (x, y) ∈ R2, a, b, c ∈ R and a 6= 0 or b 6= 0.
Suppose A : (x0, y0) is any point, then we try to find the symmetric point A′. Notice that the line
AA′ : bx − ay + ay0 − bx0 = 0 is a perpendicular bisector to line l, so we find the intersecting

point O : (
b2x0
a2 + b2

− ab y0
a2 + b2

− ac

a2 + b2
, − ab x0

a2 + b2
+

a2y0
a2 + b2

− bc

a2 + b2
). Then, we compute

A′ : (
(b2 − a2)x0
a2 + b2

− 2ab y0
a2 + b2

− 2ac

a2 + b2
, − 2ab x0

a2 + b2
+

(a2 − b2) y0
a2 + b2

− 2bc

a2 + b2
). Now we see that

Ll(u) =

b
2 − a2

a2 + b2
−2ab
a2 + b2

−2ab
a2 + b2

a2 − b2

a2 + b2

u+

 −2aca2 + b2
−2bc
a2 + b2

 for all u ∈ R2.

First, from the algebraic equation, it shows that a reflection is a linear transformation. Besides,

‖Ll(u1) − Ll(u2)‖ =

∥∥∥∥∥∥∥
b

2 − a2

a2 + b2
−2ab
a2 + b2

−2ab
a2 + b2

a2 − b2

a2 + b2

 (u1 − u2)

∥∥∥∥∥∥∥ = ‖u1 − u2‖ implies a reflection Ll(u)

is an isometry.

Rotation. Rotation describes a movement of a line with a fixed point as the pivot (see Fig 2a). The
angle of rotation is fixed in a way that a finite number of repetition on the rotation gives 360◦,
which is the identity. Algebraic equations for a rotation rθ(u) of angle θ on the vector u is given

by rθ(u) =
(
cos θ − sin θ
sin θ cos θ

)
u+ ~C, where the matrix

(
cos θ − sin θ
sin θ cos θ

)
is called a rotation matrix

in R2 and ~C is determined by the rotation center. Clearly, a rotation is a linear transformation.

Let us inspect the isometry property of a rotation. Given two points u1 and u2, then ‖rθ(u1) −

rθ(u2)‖ =

∥∥∥∥(cos θ − sin θ
sin θ cos θ

)
(u1 − u2)

∥∥∥∥ = ‖u1 − u2‖, so a rotation preserves distance of two

points. Clearly composition of two rotations is also a rotation. It is now verified that a rotation is
an isometry.

(a) rotation (b) glide reflection

Figure 2. Rotation and glide reflection
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Glide reflection. The most obvious way to see a glide reflection is the composition of translation
and reflection (see Fig 2b). So its algebraic expression can be written as G(u) = Ll(u) + v =b

2 − a2

a2 + b2
−2ab
a2 + b2

−2ab
a2 + b2

a2 − b2

a2 + b2

u +

 −2aca2 + b2
−2bc
a2 + b2

 + v. If the the glide reflection is not a reflection, we say

that the glide reflection is nontrivial.

It is not hard to see that a glide reflection is an isometry because it is a composition of two isome-
tries, translation and reflection.

2. More properties on the plane symmetry operations. We are also interested in other proper-
ties of the four operations, such as orientation-preserving , as we will show by observation. (p 5-7,
[3]; chapter 3, [5])

(a) Orientation preserved (b) orientation reserved

Figure 3. A geometric view of operations

As seen in Fig 3a and Fig 3b, there are two main types of operations, orientation preserving and
non-orientation preserving. In Fig 3a if we trace the boundary counterclockwisely, we will have
ACB and A′C ′B′, so we say that the orientation is preserved; on the contrary, in Fig 3b, the
boundaries are ACB and A′B′C ′, so the orientation is reversed. Among our four operations,
translation and rotation preserve the orientation, whereas reflection and glide reflection reverse the
orientation.

Now, before we introduce the composition those operations, it helps to learn to recognize an op-
eration. Given two images, before and after some operation, we should be able to deduce the
operation that was done. Here are the main steps:

(1) We begin with examining whether the operation is a translation. Firstly, the two images
must have have the same orientation; besides, find two correspondent points respectively
for the two images, such as A and A′, B and B′ in Fig 3a and 3b, connect each two corre-
spondent ones, and if the two lines are parallel then the operation is a translation.

(2) If it is not a translation, but the orientation is still preserved, then it is a rotation. It can be
tricky to find the center of rotation, and here is how we can do it. Let the two triangles in
Fig 3a be our example for illustration. We connect two pair of correspondent points, in this
case A and A′, B and B′, and draw a bisector line l for line AA′ and m for line BB′. Next,
we find the intersecting point O of lines l and m, and that will be the center of rotation.
The angle of rotation is given by ∠AOA′. The proof lies on the congruence of the triangles
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4AOB and4A′OB′ by the SSS law.

(3) Now, if the orientation has been changed, we can still connect two pairs of symmetric
points, and if the two lines are parallel the operation is a reflection. The mirror line is the
normal bisector line of those two lines, which is wv in Fig 1b.

(4) Lastly, for another case of reverse orientation (see Fig 3b, if the lines AA′ and CC ′ con-
necting two pair of symmetric points intersect at some point, then the operation will be a
glide reflection. And the mirror line can be found by connecting the midpoints of those two
lines AA′ and CC ′.

Now we are able to tell the composition of any two of the four operations. The geometric intuition
here is straightforward enough to figure the composition of two operation, so a rigorous proof is
omitted. The following table (Table 1) presents the relations. The m th row and the n th column
means m ◦ n.

Operations translation reflection rotation glide reflection

translation translation glide reflection rotation glide reflection
reflection glide reflection rotation glide reflection translation
rotation rotation glide reflection rotation glide reflection

glide reflection glide reflection translation glide reflection translation
Table 1. Compositions of isometries

2. WALLPAPER PATTERNS AND TERMINOLOGY

Though wallpaper patterns are not new to most of us, we will now look at them from a mathemati-
cal point of view. we will first introduce some notations, terminologies and a key theorem in plane
symmetry, and then some representatives of different symmetry groups.

1. Wallpaper groups. Wallpaper groups, also called crystallographic group, are infinite discrete
plane symmetry groups. They have repetitive patterns filling the whole plane R2, and the patterns
are invariant under compositions of two linearly independent translations. A lattice unit is a par-
allelogram whose vertices are a particular point in the pattern, and it can generate the whole plane
by translations in two directions of its sides; a lattice unit is not unique as we can choose a dif-
ferent point as vertices of the parallelogram. See the rectangular frames in Fig 4a and Fig 4b. In
most cases, there are also other isometries on the wallpaper such as rotations, reflections and glide
reflections. Necessarily, any isometry will map a lattice onto itself (p 441, [4]). It is straightfor-
ward to see that the group of all such translations that maintain the pattern are a subgroup of the
wallpaper group (p 452-453, [1]). The two examples below are created on Wallpaper Symmetry1.
In order to describe patterns of wallpaper groups, let us introduce the notations adopted by John
H. Conway and William Thurston (Chapter 1 and 2, [2]).

1http://math.hws.edu/eck/js/symmetry/wallpaper.html
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(a) p4, 442 (b) pmm, *2222

Figure 4. Two wallpaper patterns

Theorem 4. There are exactly 17 wallpaper groups in R2.

We will provide a sketch of the proof here, and the complete proof of it can be found in [6], which
is accessible for most students familiar with group theory.

We introduce an operation ∀x ∈ R2, (v, φ)(x) = v + φx with (v, τ) = v + x, where v ∈ R2 and
φ is a linear transformation, and one can check that this operation concludes all the symmetries
in R2, and it is operation-preserving. Then, we have the group of translation as T = {t ∈ R2 :
(t, τ) ∈ G}, the group of rotation or reflection H = {φ : (v, φ) ∈ G for some v ∈ R2}. We now
can define the group of symmetries as G = T ∪ H , where T = {n1t1 + n2t2 : n1, n2 ∈ Z, t1, t2
independent}, and H is finite. We split G into three cases: G has no reflection, one reflection or
more than one reflection.

Case one (no reflection): For any two groups G and G′ with the same subgroup H as the group
of rotations, we can construct an isomorphism to show equivalence of G and G′, which implies
distinct rotation subgroups generate distinct symmetry groups G. There are 5 different rotation
groups since order of a rotation group can be 1, 2, 3, 4 or 6. Hence, there are 5 symmetry groups
with no reflection.

Case two (one reflection): It is shown there are three possible situations, and again we construct
isomorphisms to the uniqueness of those three cases. Then there are three symmetry groups with
one single reflection.

Case three (more than one reflection): In this case, the subgroupH of a symmetry groupG contains
two reflections ρ, σ, and two reflections together make a rotation. Denote the order q of rotation
ρσ, then cases are q = 2, which has 4 classes of groups, q = 3 with 2 classes, q = 4 with 2 classes
and q = 6 with one class. Similar arguments from the previous two cases are applied here, and
there are 9 distinct symmetry groups in this case.

Adding up all the possibilities in three cases gives us 5 + 3 + 9 = 17 classes of symmetry groups.
In the next section, we will also apply Conway’s magic theorem to prove this theorem cleverly. To
do that, we need to know about some signatures assigned to different groups.

2. Orbifold signatures of wallpaper patterns. The four operations reflection, translation, rota-
tion and glide reflection have their own signatures, as described in Chapter 1 and 2 in [2]. Mirror
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lines (kaleidoscope), gyrations, miracles and wonders are used to describe reflection, rotation, glide
reflection and translation, respectively.

Kaleidoscopes (mirror lines). When we describe kaleidoscopes, we find out all the points where
the mirror lines intersect. ∗ is used to denote existence of mirror lines, then followed by number
of mirror lines at each intersecting point. If you see the example 5a, we have three different
intersecting points from mirror lines, and each of them has 6, 3 and 2 mirror lines, respectively.
Hence, the signature of this pattern is ∗632.

(a) *632 (b) 3*3

Figure 5. Mirror lines and rotations

Gyrations. If the pattern has gyrations (rotations) acted on it, we fix each rotation center, and
denote it with the number of its order, which could be 2, 3, 4 or 6, as we discussed earlier. Also
remember that a rotation center cannot be on a mirror line! If the pattern has both mirror lines and
gyrations, we put gyration signature in front of mirror line ones. In the case our Fig 5b, we one
rotation center, which is denoted 3, and one intersecting point, which is ∗3. So the signature is
3 ∗ 3.

Miracles. Apart from mirror lines and gyrations, a pattern is also likely to have miracle, which
is for glide reflections. The symbol to indicate a miracle is ×. Recall that a glide reflection is
composed of a reflection and a translation. If there are two glide reflections from two kinds of
mirror lines, then we count them as two, and denote ××. An example of this is Fig 6a, as we can
see there are two different mirror lines, which give rise to two different glide reflections, so the
signature is ××.

(a) ×× (b) ◦

Figure 6. Miracles and wonders
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Wonders. Lastly, we have patterns that have translations only, no mirror lines, gyrations, or mir-
acles. Notice that every wallpaper pattern has translations acted on it, but we separate the type of
patterns which only contain translations, and we write ◦ for patterns of this type. In Fig 6b, we
have a pattern consisting of only translations, and therefore denoted as ◦.
Since there are 17 wallpaper groups, there are 17 correspondent orbifold signatures: ◦, 2222, ∗∗,
22∗, 22×, 2 ∗ 22, 333, ∗333, 3 ∗ 3,××, ∗×, ∗2222, 442, ∗442, 4 ∗ 2, 632, and ∗632. We will explain
why in the section 3. We will next 17 different types of patterns and we will explore it more when
we get to the Magic Theorem.

3. Notations of the wallpaper patterns. Here, we adopt two notations, one is what we just intro-
duced as orbifold signature invented by John H. Conway (Chapter 1 and 2, [2]), and the alternative
one is Hermann–Mauguin notation notation (IUC notation) from International Union of Crystal-
lography. Both of them are listed in the following examples, which are created on Wallpaper
Symmetry2.

(a) p1 (O) (b) p2 (2222) (c) pm (∗∗) (d) pmg (22∗)

(e) pgg (22×) (f) cmm (2∗22) (g) p3 (333) (h) p3m1 (∗333)

(i) p31m (3 ∗ 3) (j) pg (××) (k) cm (∗×) (l) pmm (∗2222)

2http://math.hws.edu/eck/js/symmetry/wallpaper.html
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(m) p4 (442) (n) p4m (∗442) (o) p4g (4 ∗ 2) (p) p6 (632)

(q) p6m (∗632)

Figure 7. The 17 wallpaper patterns

4. Properties of wallpaper groups. Every wallpaper pattern has a translation subgroup that acts
on the lattices. There is one wallpaper group p1, which only has translations. There are two
subgroups we are interested here (p 452 - 453, [1]).

Theorem 5. The subgroups of translations of wallpaper groups are isomorphic to Z ⊕ Z.

Proof. Let T be the subgroup of all translations. Suppose the units of translation in two directions
are ~x and ~y, then any translation can be obtained by t ~x + s ~y. Let function f : T → Z ⊕ Z be
t ~x+ s ~y → (t, s). Notice that t1 ~x+ s1 ~y = t2 ~x+ s2 ~y if and only if t1 = t2 and s1 = s2 because
of linear independence of ~x and ~y. Then we can easily see that f is one-to-one and onto. Besides,
f((t1 ~x+s1 ~y)+(t2 ~x+s2 ~y)) = (t1+ t2, s1+s2) implies f is an isometry between T and Z ⊕ Z,
and so they are isomorphic. �

Theorem 6. The translation subgroup is the center of a symmetry group.

Proof. In last section, we showed that both rotations and reflections are linear transformations, so
we can write a rotation as R(u) = A1u + v1 and a reflection as L(u) = A2u + v2, where A1 and
A2 are 2× 2 matrices. Similarly, a translation is in form of T (u) = u+ v3 and a glide reflection is
G(u) = A2u+ v4. It follows that R(u), L(u) and G(u) do not commute with one another because
matrices are non-commutative, whereas T (u) commute with each of them. Hence, the center of
the symmetry group is the translation subgroup. �

Some wallpaper groups contain rotations, and some do not. How many of them contain rotations?
And, how many types of rotation are there in one group?

Theorem 7. The subgroup of a rotation of order n around a fixed point is isomorphic to Zn.
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Proof. Let R denote the rotation subgroup. It is not hard to see that R is cyclic, so R = {2πk
n

; k =

0, 1, . . . , n − 1}. We can define a one-to-one correspondence φ : R =⇒ Zn as φ(
2πk

n
) = k.

We then need to verify it is an isometry. Since φ (
2πk1
n

+
2πk2
n

) = k1 + k2, it shows that φ is an
isometry. Hence, the subgroup of rotation is isomorphic to Zn. �

At the first look, we realize that the order of rotation in a wallpaper group divides 2π. But there
seem to be many options from the divisors of 2π; in fact, the following theorem tells us there are
only a few possible orders. We provide a geometric sketch of the proof, and the details can be
found in (p 60-61, [5]) for those interested.

Theorem 8. The only possible orders of rotations in a wallpaper pattern are 1, 2, 3, 4 and 6. This
fact is also known as the crystallographic restriction.

Figure 8. Orders of rotation: n ≤ 5 (left), n > 6 (right)

Proof. Before we start, it is important to know that any symmetry operation such as a translation
or rotation will map a rotation center of order n to another rotation center of order n, which is the
same lattice point. We use Fig 8 to prove by elimination.

We first show that n > 6 does not hold. Please see the right figure of Fig 8. We have a rotation

center A, and assume θ =
360◦

n
, where n is the order of rotation. And assume A′ is a closest

rotation center point of order n near A, then for any other rotation center point B of the same
order, |AB| ≥ |AA′|. Now, by a rotation of θ, A′ is mapped to A′′. So |AA′′| ≥ |AA′|, which is

equivalent to ∠θ ≥ ∠A′′. We know that ∠A′′ = ∠A′ = 90◦− θ
2

; thus, θ ≥ 90◦− θ
2

, which implies
θ ≥ 60◦. So it follows that n ≤ 6, and now the case n > 6 is eliminated.

But for n = 1, 2, 3, 4, 5 or 6, we will show that n = 5 is impossible using the similar argument.
Please see the left figure of Fig 8. A rotation center of order n A is chosen, and A1 is a closest
rotation center around A. Let us map A1 to A2 and A to A3 by a rotation of θ around A and
A1, respectively. Similarly, if A2 and A3 are distinct, one can argue that |A2A3| ≥ |AA1| by the
minimality of |AA1|. This is true if either ∠A = θ ≥ ∠A2 = 180◦ − θ or A2 and A3 are the same
point. As a result, θ ≤ 90◦ or θ = 60◦, so θ 6= 72◦. What we just did rules out the case of n = 5.
So we are left with the cases n = 1, 2, 3, 4 or 6 to be verified by other criteria.
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n = 1 is the case of a trivial group, since rotation of order 1 is an identity. But further argument to
guarantee the possibilities of all n = 2, 3, 4 or 6 requires study of parallelogram generating region
of plane patterns, which we will not discuss here. �

3. THE MAGIC THEOREM

Now, it is our time to reveal the Magic Theorem by John H. Conway in chapters 3 and 6 from [2].
It is extremely useful in terms of understanding existence of 17 types of wallpaper groups. Before
we introduce the theorem itself, we need to know the “cost” of each operation.

1. Cost of operations. We assign a value, called cost, to each type of mirror line, gyration, miracle
and wonder, as listed in the following table (P 29, [2]). In order to calculate the cost of one
wallpaper patter, we need to find its orbifold signature.

Symbol Cost ($) Symbol Cost ($)
◦ 2 ∗ or × 1
2 1/2 2 1/4
3 2/3 3 1/3
4 3/4 4 3/8
5 4/5 5 2/5
6 5/6 6 5/12
...

...
...

...
N (N − 1)/N N (N − 1)/2N
∞ 1 ∞ 1/2

Table 2. The cost table

Let us practice to calculate the example in Fig 5a: the total cost =
5

6
+

2

3
+
1

2
= 2, and in Fig 5b:

the total cost =
2

3
+ 1 +

1

3
= 2. In both cases, we obtain a cost of $2, and if you try it on Fig 6a

and 6b. you will still get the same result. This is not a coincidence, but a result from the Magic
Theorem.

The following theorem can be found on p 30 in [2].

Theorem 9 (The Magic Theorem for plane repeating patterns). The signatures of plane repeating
patterns are precisely those with total cost $2.

Next, we will list all the possibilities of signatures according to the Magic Theorem to all the plane
wallpaper pattern types. Now, we can prove the theorem:

Theorem. There are exactly 17 wallpaper groups in R2.

Proof. Using the table 2, we list all the possibilities by classifying into three categories: patterns
with no mirror lines, with one mirror line and with more than one mirror lines.

Case one (no mirror lines): we can have translation, rotations, glide reflections or a combination
of them that add up to a cost of $2: ◦, ××, 22×, 2222, 333, 442, and 632. That is 7 types.
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Case two (one mirror line): we can have one mirror line combined with rotations or glide reflec-
tions. There are ∗×, 22∗, 4 ∗ 2, and 3 ∗ 3, 4 types.

Case three (more than one mirror line): we can have a combination of at least two mirror lines
together with rotations: ∗∗, 2 ∗ 22, ∗2222, ∗333, ∗442, and ∗632, which is 6 types.

If we add up all the types in three cases together, we get exactly 17 wallpaper patterns, as desired.
�

For those interested in why Magic Theorem works, please refer to chapter 6 in book [2], and they
will use Euler’s characteristic to explain it.
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