
Anomaly Detection using Voronoi k-distance
1st Sofia Jones

Department of Computer Science
University of Northern British Columbia

Prince George, Canada
sjones2@unbc.ca

2nd Weixian Lan
Department of Computer Science

University of Northern British Columbia
Prince George, Canada

wlan@unbc.ca

3rd Jonathan Shaw
Department of Computer Science

University of Northern British Columbia
Prince George, Canada

shaw5@unbc.ca

Abstract—We investigate computational methods for generat-
ing Voronoi partitions. Using the Voronoi cell data, we are able to
perform density-based outlier detection by means of the Voronoi
k-distance measure. When optimally implemented, this approach
has a linearithmic time complexity.

Index Terms—Voronoi, outlier detection, k-distance, density-
based outlier mining

I. INTRODUCTION

A. Voronoi Diagram

Given a metric space (X, d), let (Pk)
N
k=1 be an ordered

subset of X with some positive integer N . Moreover, define
the distance from a point x ∈ X to a set A ⊂ X by

d(x,A) := inf {d(x, a) : a ∈ A}.

Then we define the Voronoi region Rk by the set

Rk = {x ∈ X : d(x, Pk) ≤ d(x, Pi) ∀i 6= j}.

Informally, the Voronoi diagram is a partition of space into
N disjoint regions for which, in each region Rk, one is closer
to the datapoint Pk than to any other datapoint. For this
investigation, we will be limiting our discussion to Euclidean
2-space.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. A voronoi diagram for 10 points in Euclidean 2-space

B. Nearest Neighbor

For a given point Pi, we say that Pj is a nearest neighbor
of Pi if

d(Pi, Pj) = min
l 6=i

d(Pi, Pl).

That is, Pj is closer to Pi than is any other datapoint. We
can extend this definition and say that the k nearest neighbors
of Pi are the k datapoints Pj1, Pj2, ..., Pjk such that

d(Pi, Pjm) = min
l 6=i

l 6=j1,j2,...,jm−1

d(Pi, Pl).

Informally, the k nearest neighbors of Pi are those k points
that are closest to Pi.

C. Outlier Detection

Outlier detection is the practice of finding observations that
are the most different from all the others [1, p. 55]. Outlier
detection is a complex field with a number of approaches being
employed. Common techniques often fall under the following
categories:
• Distribution-based: How are the points distributed? Do

they follow a normal distribution pattern?
• Distance-based: How far away are points from each other

or from a central datapoint?
• Depth-based: Does the datapoint fit inside a certain

boundary? If not, it may be an outlier.
• Density-based: How close together is a group of data-

point? Points in sparse regions may be considered out-
liers.

Our investigation focuses density-based anomaly detection.
When performing density-based anomaly detection, one must
consider the following:

1) The basic approach to density-based anomaly detection
requires calculating the k-distance neighbourhoods of all
points. This by itself has a time complexity of O(N2).

2) When there is variation on density distributions, i.e
one cluster of datapoint is sparse and another is dense,
outliers may not be accurately uncovered.

There has been a significant effort to amend these short-
comings, but they are somewhat inherent to density-based
approaches. Nevertheless, we will explore a density-based way
to detect anomalies with a more performant algorithm.



II. BACKGROUND RELATED WORK

A. Voronoi Diagram Generation

Many methods exist to generate a Voronoi diagram given
a set of N points [2]. Some known ones include but not
limited to Fortune’s algorithm, Bowyer-Watson algorithm,
Delaunay triangulation and Lloyd’s algorithm. Some of these
implementations run with time complexity O(N logN), which
has been proven to be optimal [3, p. 212]. The algorithm we
implemented is something of a brute-force method, with time
complexity O(N2). We will discuss this implementation in
Part III.

B. Density Based Outlier Detection

An early approach to density-based outlier detection, known
as local outlier factor (LOF), shares similarities with both
kNN classification and density-based clustering algorithms
such as DBSCAN. The LOF algorithms assigns to each
datapoint a score LOFk of how “outlier-like” it is based on its
relative position to k of its nearest neighbors [4]. Computing
LOFk for every one of the N points in the data set, however,
has a time complexity of O(N2), since there is no immediate
way to get the k nearest neighbors of a given point without
iterating over the dataset. As we will explore, the Voronoi
diagram is the key to constructing an approach that is similar
to LOF but vastly more efficient.

C. Voronoi k-distance

As discussed, we can generate the Voronoi diagram for a
given N -point dataset in linearithmic time. As it turns out,
the Voronoi diagram gives us the information we need to
efficiently assign an “outlier-ness” score to each point. To
understand how it works, we must discuss an important fact
about the Voronoi diagram:
• If k is less than or equal to the number of edges for

a given Voronoi region Ri, then each of the k nearest
neighbors of Pi defines an edge of the Voronoi region
Ri [3, p. 207].

This is a very powerful result. Since every two adjacent
Voronoi regions in the diagram share exactly one edge [3,
p. 220], we can examine all the m edges of the region Ri

to find set Vk−NN (Pi) of the k nearest neighbors of Pi. The
computational cost of computing the k nearest neighbors of
Pi via this method is only O(logN) [3, p. 220].

Armed with an efficient method of computing the k nearest
neighbors of each point, we now wish to assign a measure of
outlier-like characteristics to each datapoint. As defined in [5],
the Voronoi k-distance Vk−d(Pi) of a point Pi is

Vk−d(Pi) =
∑

Q∈Vk−NN (Pi)

d(Pi, Q)

k

This real-valued, positive number represents the average dis-
tance between Pi and its k nearest neighbors. The bottleneck
in computing this value is finding Vk−NN (Pi) in logarithmic
time. Hence, to find the Vk−d(Pi) for every point Pi, we must:

1) Generate the Voronoi diagram for (Pi)
N
i=1 (O(N logN))

2) Compute Vk−d(Pi) for each Pi (N times O(logN), or
O(N logN))

We conclude that it is possible to compute the Voronoi k-
distance for every point in linearithmic time, which is a
substantial improvement compared to the quadratic complexity
of computing LOFk for every point.

III. IMPLEMENTATION

Our codebase consists of two components that are indepen-
dent of one another. First, to obtain a better understanding
of Voronoi diagrams and their associated data structures, we
built our own Voronoi diagram generation algorithm. Second,
using an existing implementation of the Voronoi algorithm for
the sake of efficiency and polish, we implemented an outlier-
detection program based on the Voronoi k-distance.

A. Voronoi Diagram Generation

Though efficient algorithms are appreciated for real
applications, we chose a not-so-efficient but rather simple
algorithm [6] to implement for the purpose of this project.
The main idea is as follows: the input consists of the
points that define the Voronoi diagram, which are referred
to as sites. Edges are those line segments that separate
one Voronoi region from another. Each site will have its
own Voronoi region, and while that region is updating
through iterations, we call it a cell. A cell consists of
its site and edges, and will turn into an actual Voronoi
region at the end of the program. At the beginning, we
pick two sites and enclose each with a large cell. Now we
start our iterative process on every site. For each of the
remaining sites, we dedicate a cell to it, and we find its edges
by separating this site from any other site that has its own cell.

Though we were able to grasp the big picture of this
algorithm, we faced many challenges in our implementation.
First, the data structures required for all the attributes such
as edges and cells are very complex. They are nested lists,
and while they are iterated on, operations such as insertion,
deletion or modification might be performed. Second, when
implementing from scratch as we did, we had to implement our
own functions for many computational geometry problems. An
example is a function that deduces the spatial relationship of a
line and a point in a bounded rectangle. Third, with complex
data structures, debugging for this program is extremely diffi-
cult. Since we had very limited time for this, we still could not
detect the bug in the program which produces incomplete edge
sets for some inputs (we were, however, able to confirm the
correctness of all the edges that are present). The code is not
perfect: some functions were hard coded but straightforward
as if we were doing it with pencil and paper. If we were given
more time to improve our implementation, we would employ
some functions from the existing libraries rather than build
them from scratch.



B. Voronoi k-distance

Given a dataset and a value k, our outlier-detection program
builds a Voronoi diagram for the given dataset and assigns
each point a Voronoi k−distance value which is represented
visually on a color scale. The main output is a figure:

15 10 5 0 5 10 15
x

10

5

0

5

10

15

 y

1

2

3

4

5

Voronoi 3-distance

Fig. 2. A sample output for a toy dataset of clustered points (k=3)

In addition to the figure, the program outputs a .csv file
containing the following columns:
• An index representing the datapoint
• The x and y coordinates for the datapoint
• The perimeter of the datapoint’s Voronoi region
• The Voronoi k-distance of the point
• The “outliervalue”, which is simply the k-distance

rescaled to the range [0, 10] ∈ R
• The “outlierclass”, which reads “outlier” if the

point is in the 95th percentile of “outliervalue” and
“not outlier” otherwise. The 95% threshold is an
arbitrary choice, but we feel it is useful for most datasets.

• A list of the indices of the point’s Voronoi neighbors
• A list of the edges corresponding to a point’s cell

Due to time constraints and the general difficulty of computing
the area of n-gons, we were not able to include the area of
each Voronoi cell in our output file. However, given some
time, this could certainly be added. The output file is sorted in
descending order by the magnitude of the outliervalue,
so points that are the most outlier-like appear earlier in the
file. These entries correspond to the points that appear red in
color on the output.

C. Methodology

We built the project in Python using an incremental agile
approach. We intertwined planning with developing to allow
us the flexibility to explore different outlier detection methods.
We developed our project in increments as follows:

1) The first iteration simply generated randomized datasets

2) The second iteration generated Voronoi diagrams from
random data using existing libraries

3) In the third iteration, we experimented with outlier
detection based on infinite regions. The idea was to
remove infinite edges and then create a smaller boundary
to remove further infinite edges until all outliers could
be found. However, this did not prove to be a reliable
method as some infinite edges were not outliers at all.
From there we thought of looking at areas of Voronoi
regions, however area did not prove to be an efficient or
fully effective method either.

4) The fourth and final iteration implemented outlier detec-
tion by means of the Voronoi k-distance. This iteration
also included our very own from-scratch program for
generating Voronoi diagrams. This method is the most
intuitive and seems to fit very well with Voronoi dia-
grams. K-distance is an effective way to detect anoma-
lies with performance constraints that can be alleviated
by using Voronoi diagrams. Figure 1 shows an output
from our from-scratch program.

We were able to test at each stage with the help of matplotlib—
a powerful data-visualization tool.

D. Datasets

Numerous datasets were used to detect outliers. A brief
description of each dataset will be given for reference.

1) Ahmedabad and Air Quality: The ahmedabad.csv
and air_qual.csv datasets contain air quality information
samples from various Indian cities [7]. A list of pollutants
are measured with an associated air quality index value
and a classification of air quality. We used data that had
been classified with values of poor, moderate and good to
find outliers in those clusters. We chose to investigate the
pollutant PM2.5 and how it affects the air quality index.
Particulate Matter 2.5(PM2.5) are tiny inhalable particles that
are particularly damaging to respiratory function. These fine
particles have found to be more damaging than larger particles,
PM10, and have a considerable impact on air quality index.
Ahmedabad contains only data for one city. On the other
hand, air_qual.csv is an accumulation of all cities and is
classified by Moderate, Good, Poor and Very Poor air quality.
This allows us to work will a real large dataset with inherent
clusters. A k value of 2 to 4 is recommended for this dataset.
There are only 6 classifications so a k value any higher than
6 no additional groups will be generated.

2) Clusters: This dataset has easily defined clusters that
can show how our diagrams can handle clusters of data. It fits
very nicely with a density based approach to outlier detection.

3) Letter: This dataset was taken from a Harvard unsuper-
vised learning benchmark [8]. It has a fairly even spread and
is a good test for us to see if our model can detect outliers in
a spread out dataset.

4) Loan: Two datasets were taken from a bank datasets
of individuals and companies applying for loans [9].
loan_count.csv compares loan counts with completion
rates. The more loans the lower completion rate it would



seem. However this was always the case in this dataset.
loan_type.csv grouped the type of customer with their
completion rate of loans. Companies with their own income
were most likely to complete the loan. A value of k can be
supplied for this dataset and a group will be created for each
increment of k.

5) Airplane Crashes: This is an almost linear dataset [10]
that is a great test for our density based approach. We are still
able to find outliers despite the linear dataset. This proves the
versatility of our anomaly detection.

IV. EVALUATION

A. Voronoi k-distance for different k

Interestingly, the value of k seems to have extremely little
effect on the outlier-detection functionality of the algorithm.
For the dataset ahmedabad.csv, we found that the al-
gorithm detects 68 outlier points for k = 2, k = 3, and
k = 4. While the magnitude of the k-distance larger for
larger k, the actual distribution of the k-distance (and hence
the outliervalue) values is nearly identical for various
k. Moreover, the list of points sorted by outliervalue
appears in approximately the same order regardless of k.

The performance of the algorithm does not vary as a
function of k: in order to find the k-nearest neighbors for
a point Pi, we must compute all the Voronoi neighbors of Pi

irrespective of k.

B. An observation about Voronoi neighbors

As discussed, Voronoi neighbors always share exactly one
edge, and no other points share that edge with either of
them. During our research, we began to wonder the following
question: for an N -point Voronoi diagram, is there a lower
bound on the number of edges a Voronoi region may have?
While we did not find a theorem to answer this question, we
did notice that for large n, the lower bound seems to be 3
edges.

C. Algorithm shortcomings

The Voronoi k-distance method of outlier detection suffers
from the same problems as any other density-based outlier de-
tection system. In particular, it tends to register false positives
when cluster density varies.

Notice in figure 3 that the top rightmost data point is seen
as an outlier, even though it appears consistent with the linear
trend. This is because this region is sparse compared to the
more-densely populated region in the bottom right. In reality,
the datapoints underneath the imaginary line would probably
be considered more “outlier-like” than the former.

V. CONCLUSION

In this discussion, we have only scratched the surface of
Voronoi-based approaches to outlier detection. In particular,
we have limited ourselved to Euclidean 2-space. However,
with a bit of work, the next logical step would be to generalize
our algorithm and results to both higher-dimensional Euclidean
space and other metric spaces. The reader who wishes to

0 20 40 60 80
Aboard

0

10

20

30

40

50

60

70

80

Fa
ta

lit
ie

s

0

5

10

15

20

25

Voronoi 2-distance

Fig. 3. A dataset in which the algorithm registers a false positive

gain more information on general Voronoi partitions may want
to consult Preparata and Shamos’ exhaustive 1985 treatment
of computational geometry [3]. For more information on
the Voronoi k-distance, one should consult with Jilin Qu’s
seminal 2008 conference paper on the topic [5]. The utility
of the Voronoi diagram in outlier detection also extends be-
yond density-based approaches: several authors have discussed
using the Voronoi diagram in model-based and statistical
approaches [11], [12]. In conclusion, the Voronoi diagram
is a fascinating data structure which seems to have a great
deal of utility in a variety of data-mining fields. In particular,
we believe that the Voronoi k-distance is an underappreciated
method of outlier detection. We feel that this topic deserves
additional research, and—who knows—maybe one of us will
be the person to conduct it in the future.

REFERENCES

[1] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar,
Introduction to Data Mining, Second edition. NY NY:
Pearson, 2019, ISBN: 978-0-13-312890-1.

[2] R. Klein, Concrete and abstract Voronoi diagrams,
ser. Lecture notes in computer science 400. Berlin:
Springer, 1989, 167 pp., OCLC: 20800464, ISBN: 978-
3-540-52055-9 978-0-387-52055-1.

[3] F. P. Preparata and M. I. Shamos, Computational ge-
ometry: an introduction, ser. Texts and monographs in
computer science. New York: Springer-Verlag, 1985,
390 pp., ISBN: 978-0-387-96131-6.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander,
“Lof: Identifying density-based local outliers,” SIG-
MOD Rec., vol. 29, no. 2, pp. 93–104, May 2000, ISSN:
0163-5808. DOI: 10 . 1145 / 335191 . 335388. [Online].
Available: https://doi.org/10.1145/335191.335388.



[5] J. Qu, “Outlier detection based on voronoi diagram,”
in Proceedings of the 4th International Conference on
Advanced Data Mining and Applications, ser. ADMA
’08, Chengdu, China: Springer-Verlag, 2008, pp. 516–
523, ISBN: 9783540881919. DOI: 10.1007/978-3-540-
88192- 6 51. [Online]. Available: https : / /doi .org /10 .
1007/978-3-540-88192-6 51.

[6] S. Wolfman. (2000). “Algorithm for generation of
voronoi diagrams,” University of Washington Computer
Science & Engineering, [Online]. Available: https : / /
courses . cs . washington . edu / courses / cse326 / 00wi /
projects/voronoi.html (visited on 12/11/2020).

[7] (Aug. 2020). “Air quality data in india (2015 - 2020),”
Kaggle.com, [Online]. Available: https: / /kaggle .com/
rohanrao / air - quality - data - in - india (visited on
12/12/2020).

[8] M. Goldstein, “Unsupervised anomaly detection bench-
mark,” Oct. 6, 2015, Publisher: Harvard Dataverse type:
dataset. DOI: 10 . 7910 / DVN / OPQMVF. [Online].
Available: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/OPQMVF (visited on
12/12/2020).

[9] R. Pilliard Hellwig, Mse survey open data (2018) [csv],
Sep. 2019. DOI: 10.6084/m9.figshare.9848153.v1. [On-
line]. Available: https: / /figshare.com/articles/dataset /
MSE Survey Open Data 2018 CSV /9848153/1.

[10] (Sep. 2016). “Airplane crashes since 1908,” Kag-
gle.com, [Online]. Available: https : / / kaggle . com /
saurograndi / airplane - crashes - since - 1908 (visited on
12/12/2020).

[11] M. Luis, F.-T. Arsene, N. Laurent, and M. Schoenauer,
“Anomaly detection with the voronoi diagram evo-
lutionary algorithm,” arXiv:1610.08640 [cs], Oct. 27,
2016. arXiv: 1610.08640. [Online]. Available: http: / /
arxiv.org/abs/1610.08640 (visited on 12/10/2020).

[12] C. E. Zwilling and M. Y. Wang, “Multivariate voronoi
outlier detection for time series,” in 2014 IEEE Health-
care Innovation Conference (HIC), Seattle, WA, USA:
IEEE, Oct. 2014, pp. 300–303, ISBN: 978-1-4673-6364-
8. DOI: 10.1109/HIC.2014.7038934. [Online]. Avail-
able: http : / / ieeexplore . ieee . org / document / 7038934/
(visited on 12/10/2020).


