
A SURVEY OF MATHEMATICAL CRYPTOGRAPHY

SON CHAU, WEIXIAN LAN, AND JONATHAN SHAW

ABSTRACT. Cryptography refers to the set of practices by which parties can exchange communi-

cations in such a way that those communications are only useful to their intended recipient. Cryp-

tography has been used for millenia—indeed, the Roman military general Julius Caesar once used a

primitive cryptographic system which involved shifting letters by a fixed amount. In fact, for most

of history, all cryptographic systems were variations of this principle: they involved shifting and/or

permuting glyphs in some way, and trusted parties needed to have previously obtained a formula

(or secret key) for reversing these transformations. In the 1970s, however, an entirely new paradigm

was introduced: asymmetric cryptography. Asymmetric cryptosystems rely on interesting number-

theoretic properties to provide cryptosystems that do not require secret keys to be exchanged. In this

paper, we will take a brief look into the origins of cryptography. We will then introduce the basic

principles of asymmetric cryptography before taking an in-depth look at elliptic curves, which form

the basis of many modern asymmetric cryptosystems.

1. AN INTRODUCTION TO CRYPTOGRAPHY

What is cryptography? To answer this question, we’ll present a classic scenario. Suppose Alice

wants to send a secret to her friend Bob over an insecure channel (be it the internet, a telephone

line, the postal system, or any other public method of communication). Alice wants to be sure,

however, that her enemy Eve—who may be monitoring the channel—cannot retrieve the secret

that is meant for Bob’s eyes only.

Alice Bob

Public
Channel

Eve

Date: December 13, 2019.

Key words and phrases. cryptography, asymmetric cryptosystem, elliptic curves.

1

How can Alice achieve her goal? This is the motivating question behind the study of cryptography.

Cryptography, then, is defined as the study of techniques by which private information can be

broadcast over public channels while ensuring that only the intended recipient can actually receive

the information.

1. Symmetric Ciphers. Throughout history, the vast majority of cryptosystems have fallen under

the category of symmetric ciphers. Such cryptosystems contain the following components [9,

Section 3.1]:

• A encryption algorithm, which converts an ordinary message, or plaintext, to an obfuscated

version of the message, or ciphertext.

• A decryption algorithm, which converts ciphertext back to its original plaintext.

• A secret key which is shared between two parties and is required as input to both the

encryption algorithm and the decryption algorithm. The encryption algorithm produces a

different output ciphertext for each different key used.

Suppose Alice wishes to transmit a message secretly to Bob using a symmetric cipher. Assuming

that Alice and Bob have, in the past, exchanged a secret key, the following exchange could occur

[6, Chapter 1]:

(1) Alice feeds her plaintext message along with her copy of the secret key into the encryption

algorithm to generate ciphertext.

(2) Alice transmits the ciphertext to Bob over an insecure channel.

(3) Bob receives the ciphertext and feeds it into the decryption algorithm along with his copy

of the secret key, which returns the plaintext.

E

Secret Key

Plaintext Ciphertext

Transmission

D
Plaintext

Secret Key

We will take a brief look at some symmetric ciphers before introducing asymmetric ciphers.

1.1. Caesar Cipher. An early user of cryptography was Roman general Julius Caesar, who used

a very simple cryptographic system to send military communications in a secure manner. The

system, known as the Caesar Cipher, involves shifting each letter of the alphabet by a fixed amount

[9, Section 3.2]. If we think of the plaintext characters p as the numbers corresponding to their

2

respective positions in the English alphabet, the corresponding ciphertext character C is obtained

by computing

C = p+ s (least positive residue modulo 26)

where s is the shift parameter corresponding to the number of positions the plaintext character is

shifted. For example, with a shift parameter of 3, we can encode the word “secret”:

s e c r e t
19 5 3 18 5 20

U H F V H W
21 8 6 22 8 23

The shift parameter is the key for this cipher—that is, the shift cipher is the piece information

needed to encrypt and decrypt the message. This technique may have been useful to Julius Caesar

while it was novel. However, it is not difficult to see that this cipher is very easily broken: given

a long enough body of ciphertext, a quick statistical analysis of letter frequency would reveal the

correspondence between plaintext characters and their ciphertext counterparts. [6, Section 1.2]

shows in detail how one would go about breaking the Caesar Cipher.

1.2. Rotor Machines. The Caesar cipher is weak because it maps plaintext to ciphertext in a pre-

dictable manner. In the 19th and 20th centuries, mechanical devices were created to encrypt and

decrypt messages according to much more complex schemes. During the second world war, the

German and Japanese militaries [9, Section 3.4] used rotor machines: mechanical devices that re-

lied on rotating cylinders to choose a different substitution for each letter in a message. The initial

settings of the rotor machine acted as the secret key. Compared to the simple Caesar Cipher, the

ciphers implemented in rotor machines were very difficult—but not impossible—to break.

1.3. Modern Symmetric Ciphers. Symmetric cryptosystems remain a staple of modern cybersecu-

rity, and are used in conjunction with asymmetric cryptosystems. Modern symmetric encryption

schemes are implemented as computer algorithms. Examples include Advanced Encryption Stan-

dard (AES) and Triple Data Encryption Standard (3DES). These systems are very complex: they

obfuscate the ciphertext’s relationship to the plaintext and the secret key such that it is computation-

ally infeasible to recover either, no matter how much ciphertext is available for analysis [6, Section

3.7].

2. Asymmetric Ciphers. As we have seen, all symmetric cryptosystems are essentially the same

in principle: they involve the use of an invertible function EK (for a particular key K) which

3

performs permutations, substitutions, and perhaps other obfuscations to produce a ciphertext [9,

Chapter 9].

While modern symmetric cryptosystems are very secure, they are not appropriate in all circum-

stances. This is because they assume that participants have already securely exchanged a secret

key, which is not always the case. Asymmetric Cryptosystems, invented in the 1970s, introduce

a radically new paradigm in which each participant has two keys: a private key which the par-

ticipant safeguards, and a public key which he/she shares publicly. When a message is encrypted

using an individual’s public key, it can only be encrypted using that same individual’s private key

[9, Chapter 9].

Suppose Alice wishes to securely send a message to Bob using an asymmetric cryptosystem. The

following might occur:

(1) Alice finds Bob’s public key, which he has released in some accessible location such as the

internet. She uses this key as an input to the encryption algorithm along with her plaintext.

(2) Alice transmits the encrypted message to Bob over an insecure channel. Her message

cannot be decrypted by anybody other than Bob, as only Bob has access to his private key.

(3) Bob recieves the ciphertext and decrypts it using his private key.

How can asymmetric cryptosystems be implemented? To answer this question, we will begin by

introducing the fundamental building blocks of such systems. We will then look at some early

developments in asymmetric cryptography.

2. ASYMMETRIC CRYPTOSYSTEMS

The symmetric cryptosystems discussed in the introductory section relied on permutations and

substitutions performed on the plaintext in various complex ways. Asymmetric cryptosystems,

however, take a different approach: they treat plaintext messages as numbers, and then use results

from number theory to map these numbers to other numbers (and back again). In practice, asym-

metric cryptosystems usually operate on characters encoded as integers (represented in binary)

according to the ASCII or UNICODE schemes.

1. One-way Functions and Trapdoors. We wish to map our “plaintext numbers” to “ciphertext

numbers” in a way where only our desired recipient can do the reverse. In particular, we need a

4

one-way function—a function that is computationally easy to compute in one direction, but whose

inverse is computationally difficult to compute1.

We may also wish that our one-way function would have a trapdoor: a piece of information that

makes its inverse computation computationally easy. If such a piece of information exists for a

one-way function, the function is called a trapdoor function.

Do one-way functions and trapdoor functions exist? There is no definitive answer to this question

[4, Section 2.1], but we do know of some functions that satisfy our desired properties to the best

of our knowledge.

2. Discrete Logarithm Problem. A particular problem at the intersection of number theory and

abstract algebra has been central to the development of many cryptosystems. This is the Dis-

crete Logarithm Problem (DLP). Its most general form, stated in group-theoretic language, is the

following:

Definition 2.1. (Generalized discrete logarithm problem) Let G be a group containing elements

g, h. The Discrete logarithm problem for G is to determine an integer x such that gx = h [6,

Definition 8.3.2].

One form of the discrete logarithm problem used in various public-key cryptosystems is the dis-

crete logarithm problem in the multiplicative group U(p), where p is a prime number. Its statement

is the following:

Definition 2.2. (Discrete logarithm problem in U(p)) Suppose that g is a primitive root modulo p

and h ∈ U(p). The discrete logarithm problem for U(p) is to find x ∈ N such that

gx ≡ h (mod p).

The number x is called the discrete logarithm of h to the base of g, and it is denoted by logg h.

The discrete logarithm problem over U(p) appears to have the properties of a one-way function.

Indeed, given g and x, we know of efficient algorithms (such as the Fast Modular Exponentiation

discussed in [8, Section 4.1]) to determine h. However, given only h and g, it is not clear how

one would determine x other than computing gx for every possible x until the correct result is

found. For very large values of p, it is computationally infeasible to compute x via this method.

There exist other, more efficient methods for solving the discrete logarithm problem in U(p), which

1Interestingly, the existence of such functions is not confirmed, and remains the holy grail of unsolved problems in

computer science [4, Section 2.1]. For certain functions, we have not found an efficient way to compute the inverse—

so we assume that no such way exists.

5

are discussed in [4, Section 2.6]. Right now, there are no known polynomial-time algorithms for

solving the DLP in U(p).

3. Diffie-Hellman Key Exchange. The discrete logarithm problem seems to have some one-way

characteristics: given g and x, it is computationally easy to compute h, whereas it is computation-

ally hard to compute x given g and h. This leads us to the first ever asymmetric cryptographic

scheme, which was introduced by Whitfield Diffie and Martin Hellman in 1976 [6, Section 8.1].

Suppose that Alice and Bob wish to share a secret key, but they must communicate over a public/

monitored channel in order to do so. Is it possible for Alice and Bob to exchange a key without the

eavesdropper Eve also obtaining the key? As it turns out, the difficulty of the discrete logarithm

problem provides a way of performing this seemingly-impossible task. Consider the following

procedure:

(1) Alice and Bob agree on a large prime p and an integer g ∈ {2, 3, ..., p − 2}. They do so

over the public channel, so Eve is remains aware of these numbers.

(2) Alice secretly chooses an integer a, which she keeps private. Similarly, Bob chooses a

private integer b.

(3) Alice computes the least positive residue A = ga (mod p) and Bob computes the least

positive residue B = gb (mod p). Alice and Bob then share these numbers with each other.

(4) Alice uses her private integer a to computeBa (mod p). Similarly, Bob computesAb (mod p).

These least positive residues are equal, and serve as the shared key.

The correctness of the Diffie-Hellman exchange follows [4, Section 2.3]:

Proof. Ab ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ba (mod p). �

Since Eve does not have access to Bob and Alice’s private integers a and b, she is left with the

problem of computing the value of ab in gab (mod p). This is known as the Diffie-Hellman Problem.

Definition 2.3. Given a prime number p and an integer g, the Diffie-Hellman Problem is the

problem of computing gab (mod p) using the known values ofA = ga (mod p) andB = gb (mod p).

The Diffie-Hellman problem is certainly no more computationally difficult than the discrete loga-

rithm problem, but it is currently unknown whether it is computationally easier [4, Section 2.3].

The Diffie-Hellman key exchange is a very useful technique, but it does not allow us to encrypt

messages. In the sequel, we will look at an extension of the Diffie-Hellman protocol that allows

for encryption and decryption of arbitrary messages. We will then take a detour from discrete

6

logarithm-based techniques to look at a different encryption scheme that relies heavily on results

from number theory.

4. ElGamal Cryptosystem. In 1985, Egyptian-American cryptographer Taher Elgamal intro-

duced a method of sending encrypted messages based on the discrete logarithm problem in . Its

use is outlined in the following example [4, Section 2.4] featuring Alice and Bob.

First, we set up the cryptosystem by doing the following:

• We choose a large prime number p and an element g modulo p. These numbers are shared

among all participants.

• Alice chooses a secret number a as her private key. She also computes A ≡ ga (mod p) as

her public key.

Suppose that Bob wants to use Alice’s public key to securely send her a message. In particular,

Bob’s message m is encoded as a number between 2 and p. The exchange would proceed as

follows:

(1) Bob first chooses a random number k modulo p, which we call his ephemeral key. He uses

this key only one.

(2) Bob computes the following two quantities using g and Alice’s public key A:

c1 ≡ gk (mod p) c2 = mAk

He sends Alice the pair (c1, c2), which serves as his ciphertext.

(3) Alice computes the number y ≡ ca1 (mod p) and its multiplicative inverse y−1 (mod p). She

multiplies the number c2 by y−1, which yields Bob’s message m.

The proof of correctness for the ElGamal Cryptosystem over U(p) can be shown easily [4, Section

2.4].

Proof.

y−1c2 ≡ (ca1)
−1(mAk) (mod p)

≡ (gak)−1(m(ga)k) (mod p)

≡ (gak)−1(gak)m (mod p)

≡ m (mod p)

�

7

In order to decode the message, Eve would need to compute y—but y ≡ ca1, so Eve would have for

solve the discrete logarithm problem for U(p).

The Elgamal Cryptosystem is versatile, as it can be based on the discrete logarithm problem in

groups other than U(p). In particular, we will revisit the Elgamal Cryptosystem in our discussion

of elliptic curve cryptography. Before we proceed to this discussion, however, we will discuss

RSA, which was the first public key encryption-decryption system ever developed.

5. RSA.

5.1. The History of RSA. RSA was the first public-key encryption-decryption system, and is still

the most widely-used. It was introduced by three American computer scientists—Ronald Rivest,

Adi Shamir, and Leonard Adleman—in 1977 [6, Chapter 7]. The algorithm is based on the diffi-

culty of computing the Euler phi function φ(n) for a composite number n compared to the ease of

computing φ(p) = p− 1 for a prime p.

5.2. The RSA Algorithm. The basic encryption and decryption steps are the following [6, Chapter

7]:

(1) Choose two large prime numbers p and q.

(2) Compute their product n = pq.

(3) Compute φ(n) = (p− 1)(q − 1).

(4) Choose e = kpub ∈ {1, 2, . . . , φ(n)− 1}, where gcd(e, φ(n)) = 1.

(5) Compute kpr = d such that d e ≡ 1 (mod φ(n)).

(6) Encryption: Given the public key kpub = (n, e) and original message x ∈ Zn = {0, 1, . . . , n−
1}, we can encrypt into y = ekpub(x) ≡ xe (mod n).

(7) Decryption: Given kpr = d, we can decryp by x = dkpr(y) ≡ yd (mod n).

5.3. How RSA Works. The security of RSA cryptosystem relies on the computational difficulty of

φ(n) for a large n, where n is the product of two prime numbers. The mathematical theory behind

the RSA can be demonstrated with the help of a few critical theorems from elementary number

theory.

Lemma 2.1 (Euler’s phi function). For any number n ∈ N with n = pq, where p and q are two

primes, the Euler’s phi function can be expressed as φ(n) = (p− 1)(q − 1).

Proof. φ(n) is a multiplicative function, so we can write φ(n) = φ(p)φ(q). Since p and q are

prime, φ(p) = p− 1 and φ(q) = q − 1. Hence, we have φ(n) = (p− 1) (q − 1). �

8

Lemma 2.2 (Fermat’s little theorem). Let p be a prime number and a ∈ Z with gcd(a, p) = 1.

Then, ap−1 ≡ 1 (mod p).

Theorem 2.1 (Theory of RSA). Given two distinct prime numbers p, q, let n = pq, and let e be

such that (e, φ(n)) = 1 and d be such that d e ≡ 1 (mod φ(n)). Denote the original numeric

value x, and let y ≡ xe (mod n) be the encryped value. Then, we can find the original value x by

x ≡ yd (mod n).

Proof. From the previous lemma, we know that φ(n) = (p−1) (q−1). Since d e ≡ 1 (mod φ(n)),

ed = 1 + k φ(n) = 1 + k (p − 1) (q − 1). Now, yd = (xe)d ≡ x1+k(p−1)(q−1) (mod n). If

p - x and q - x, by Fermat’s little theorem, we have x(p−1) ≡ 1 (mod p) and x(q−1) ≡ 1 (mod q).

Next, it yields x1+k(p−1)(q−1) ≡ x (mod p) and x1+k(p−1)(q−1) ≡ x (mod q). On the other hand,

if we have either p | x or q | x, we obtain the same results: x1+k(p−1)(q−1) ≡ x (mod p) and

x1+k(p−1)(q−1) ≡ x (mod q). Notice that pq - x as x < n. Because p and q are relatively prime, in

all the cases, we will have x1+k(p−1)(q−1) ≡ x (mod pq). That is, yd ≡ x (mod n), as required.

We also need to verify the uniqueness of our solution. Suppose we have both x1 and x2 as our

solutions, where x1, x2 ∈ Zn. Hence, we have xe1 ≡ y (mod n) and xe2 ≡ y (mod n). Then,

xe1 ≡ xe2 (mod n), which implies xde1 ≡ xde2 (mod n). Recall that d e = 1 + k(p − 1)(q − 1)

with k ∈ N, and so x1x
k(p−1)(q−1)
1 ≡ x2x

k(p−1)(q−1)
2 (mod pq). Also notice that xk(p−1)(q−1)1 ≡

1 (mod (pq)) and xk(p−1)(q−1)2 ≡ 1 (mod (pq)) because (x1, pq) = 1 = (x2, pq). This gives us

x1 ≡ x2 (mod n). As x1, x2 ∈ Zn, the only possibility is x1 = x2. So there is only one unique

solution to xe ≡ t (mod n).

Putting together the first and second parts of our proof, we can safely conclude that x ≡ yd (mod n)

is the unique solution to xe ≡ y (mod n). �

5.4. Security of RSA. To the best of our knowledge, the most efficient way to break RSA encryp-

tion is by attempting to factor the modulus n into its constituent primes p and q. RSA has his-

torically used a 1024-bit modulus as a standard, but recent advancements in factoring algorithms

and computer hardware have indicated that we may soon be capable of factoring such numbers.

Hence, we should migrate to larger moduli: a 4096-bit modulus should remain safe for a long time

to come [6, Section 7.8].

With increasingly large moduli being required for RSA, we might wish to look for alternative

cryptosystems with shorter operands and shorter ciphertexts. The search for such an appropriate

algebraic structure brings us to elliptic curves, which we will discuss in detail.

9

3. ELLIPTIC CURVE CRYPTOGRAPHY

1. Elliptic Curves. Before we study elliptic curve cryptography, we first introduce elliptic curves.

It is important to remember that elliptic curves are not ellipses. A formal definition of an elliptic

curve will require much in-depth background in algebraic geometry, so instead we use the follow-

ing simplified definition for our purpose:

Definition 3.1 (Elliptic Curve). An elliptic curve is a curve of the form

y2 = x3 + ax+ b, (1)

where 4 a3 + 27 b2 6= 0 and a, b ∈ R [4, Section 5.1].

The condition 4 a3 + 27 b2 6= 0 is to ensure that the elliptic curve has three distinct roots including

complex roots. In order to visually grasp elliptic curves over R , we generated some examples in

Figure 1 and drew some observations from them.

(a) case I: a > 0

(b) case II: a < 0

Figure 1. f(x) = x3 + ax+ b

Here are some observations:

10

(1) An elliptic curve is continuously differentiable on R2, so geometrically, the curve is smooth,

and it does not have any cusps.

(2) A curve is symmetric along x−axis, because (−y)2 = y2 = x3 + ax+ b.

(3) It is unbounded, because we can always have large x and y that satisfy equation 1.

Now, we introduce the algorithm to sketch an elliptic curve by hand.

(1) Given an elliptic curve y2 = x3 + ax+ b, let f(x) = x3 + ax+ b.

(2) We differentiate f(x) to obtain f ′(x) = 3x2 + a, which is a parabola. So the sign of a

determines the behavior of f ′(x). If a is non-negative, then f ′(x) ≥ 0 for all x ∈ R, and

so f(x) is non-decreasing. And with the sign of b, we can easily sketch f(x) (see Fig 1a).

(3) If a is negative, then f ′(x) < 0 for some interval, then the trend of f(x) will be increasing,

decreasing and increasing again. Depending on the value of b, the curve will have positive

or negative y−intercept; and depending on the value of 27b2 + 4a2, the curve might or

might not have a negative local minimum (see Fig 1b).

(4) Lastly, since y2 is non-negative, we let y2 = f(x) for f(x) ≥ 0. Then, for the upper

branch, we approximate y ∼ f(x), and for the lower branch, we have y ∼ −f(x) because

the curve is symmetric across x−axis. This is how we obtained six types of elliptic curves

in Fig 1. It is not accurate, but a good approximation of the shape of a curve.

2. The Abelian group on elliptic curves. In terms of group theory, we are interested in an

Abelian group defined on the elliptic curves [7, Chapter 14]. Let the points on elliptic curves

be elements of the group, and the point at infinity be the identity, which is assumed on every verti-

cal line. We also define the group operation addition as follows: given two points A and B on the

curve, the line connecting A and B will intersect with the curve at another point C. The reflection

C ′ of C across the x-axis is A + B. Let’s first explore the property of all the points in R2. We

will denote the set and its operation by (E, +), and we will show that it is a well-defined Abelian

group.

(1) The operation is commutative

Clearly, when joining two points on the curve with a line, the order of (x1, y1) and (x2, y2)

does not matter, ie, (x1, y1) + (x2, y2) = (x2, y2) + (x1, y1).

(2) The operation + is closed in E.

Let (x1, y1) and (x2, y2) be any two elements in E. There are two cases. First, if x1 =

x2 = c, then the line joined by the two elements x = c and y2 = x3 + ax + b gives

y2 = c3 + ac + b, so only y1 and y2 satisfy the equation. In other words, the line does

not intersect at another finite point other than (x1, y1) and (x2, y2). Recall that the point

11

infinity lies on every vertical line, so in this case the addition of (x1, y1) and (x2, y2) would

have to be the reflection of infinity, which is infinity itself. Second, if x1 6= x2, then we

would expect the line y = kx + c joined by (x1, y1) and (x2, y2) to have another point

(x3, y3) on the elliptic curve, because a cubic equation with two distinct real roots must

have another distinct real root. Now, we combine equations y2 = x3+ax+b and y = kx+c

to obtain x3 − k2x2 + (a − 2kc)x + b − c2 = 0. The three distinct roots are related as

x1 + x2 + x3 = k2. Thus, we have (x3, y3) = (k2 − (x1 + x2), −k4 + k2(x1 + x2) − c).
In either case, we showed that + is a closed operation for E.

(3) An identity is included.

For any point (x, y) on the curve, if we connect it with infinity, we create a vertical line,

which intersects at another finite point. The reflection of that intersecting point gives back

the point (x, y). This verifies that infinity is the identity element.

(4) An inverse is included.

For ant point (x, y) on the curve, we claim that (x, −y) is the inverse. Notice that (x, −y)
is on the elliptic curve since it is symmetric along x− axis. Also, the vertical line formed by

(x, y) and (x, −y) intersect with the curve at infinity. So (x, y) + (x, −y) is the identity,

which is infinity.

(5) The operation is associative.

The proof by horrific computation using the formula of addition is skipped there. We will

just accept that + is associative. For those interested in a complete proof, please refer to

[5].

A special case occurs when we wish to double a point P . The line connecting P to P is defined

as the tangent line at P . Using this information, we are able to find a formula for the addition of

points on elliptic curves.

Theorem 3.1 (Elliptic curve addition formula). Given a point P : (x0, y0) and Q : (x1, y1) on the

elliptic curve y2 = x3 + ax+ b, we have P +Q = (λ2 − x0 − x1, λ3 − 2λx0 − λx1 + y0), where

λ =


3x20 + a

2y0
, P = Q

y1 − y0
x1 − x0

, P 6= Q
.

Proof. • Case one (P = Q): Differentiating y2 = x3 + ax + b on both sides with re-

spect to x gives y′ =
3x20 + a

2y0
, which is the slope of the tangent line y =

3x20 + a

2y0
x +

2y20 − 3x30 − ax0
2y0

. Let λ =
3x20 + a

2y0
, then y = λx+ y0 − λx0. Substitute the line into the

curve to obtain (λx+y0−λx0)2 = x3+ax+b, and thus, x3−λ2x2+[a−2λ(y0−λx0)]x+

12

b− (y0−λx0)2 = 0. Since we already know that x0 is a repetitive root, we expect the cubic

equation in form of (x−x0)2(x−x2) = 0. From here, we see the other root x2 = λ2−2x0.

Then y2 = λ3 − 3λx0 + y0. So P + Q = 2P = (x2, y2) = (λ2 − 2x0, λ
3 − 3λx0 + y0),

where λ =
3x20 + a

2y0
.

• Case two (P 6= Q): The line joined by P and Q is y = λx+ y0 − λx0, and we combine it

with y2 = x3 + ax+ b to obtain x3 − λ2x2 + [a− 2λ(y0 − λx0)]x+ b− (y0 − λx0)2 = 0.

Since (x0, y0) and (x1, y1) are solutions, we have (x − x0)(x − x1)(x − x2) = 0, and

so x2 = λ2 − x0 − x1. Then, y2 = λx2 + y0 − λx0 = λ3 − 2λx0 − λx1 + y0. Hence,

P +Q = (x2, y2) = (λ2 − x0 − x1, λ3 − 2λx0 − λx1 + y0).

�

3. Elliptic curves over finite fields. Previously, we studied elliptic curves over R. Now, let us

turn to elliptic curves over a finite field Fp. We introduce finite fields as follows in order to study

elliptic curves over Fp.

Definition 3.2. A finite field is a field with a finite, prime number of elements. We denote a finite

field by Fp. A finite field has operations that satisfy the basic rules as we see in basic algebra.

Moreover, it has four operations: addition, subtraction, multiplication, and division are well de-

fined.

Definition 3.3. An elliptic curve E over Fp is an equation in form of y2 = x3 + ax + b with

A,B ∈ Fp and 4a3 + 27b2 6= 0, and we denote the curve E(Fp) = {(x, y) ∈ Fp × Fp : y2 ≡
x3 + ax+ b (mod p)} ∪ {∞}.

Similarly, we define an elliptic curve over rational numbers as E(Q)= {(x, y) ∈ Q × Q: y2 =

x3 + ax+ b} and over integers as E(Z) = {(x, y) ∈ Z× Z : y2 = x3 + ax+ b}.

Before, we explored elliptic curves and their properties over the field R. Now we are interested in

elliptic curves over finite fields Fp. It is worth mentioning that the points on an elliptic curve over

Fp is still a group, and the proof is analogous to the previous one. All the group properties and

operations defined previously on an elliptic curve still apply, but we cannot expect any geometric

interpretation for them. We will stick to the same formula for addition of two points. Because

addition is well defined in Fp, the four operations of two points will still be on E(Fp). Here are

some examples generated by SageMath.

Example. We have an elliptic curve E defined by y2 = x3 + ax+ b. We code the following:

E = EllipticCurve(GF(p),[a,b])

13

E.points()

Now, we have the following examples:

(1) E : y2 = x3 + 1, E(F5) = {∞, (0, 1), (0, 4), (2, 2), (2, 3), (4, 0)}
(2) E : y2 = x3 − 2x+ 3, E(F7) = {∞, (1, 3), (1, 4), (2, 0), (6, 2), (6, 5)}
(3) E : y2 = x3 + 11x− 15,

E(F13) = {∞, (1, 6), (1, 7), (5, 3), (5, 10), (8, 0), (10, 4), (10, 9), (12, 5), (12, 8)}

From the above, we observe in E(Fp) that each x coordinate corresponds to two y coordinates, say

y1 and y2, which are identical if and only if y1 = y2 = 0. Moreover, y1 + y2 ≡ 0 (mod p).

Next, our concern is the number of points on an elliptic curve y2 = x3+ax+ b over Fp [4, Section

5.2]. Let us start with number probability. There are p possibilities for the value of x3 + ax + b,

and x0 is a solution if x30 + ax0 + b is a perfect square modulo p. So the number of points on the

curve is related to the number of perfect squares in Fp. If we square every element in Fp, we will

get p−1
2

+ 1 distinct perfect squares, because n and p − n induce the same square, except when

n = 0. So in about 50% of the time, x3 + ax + b has square roots, and most likely two distinct

ones. Including a point at infinity, we have about 2 (p−1
2

+ 1) + 1 ∼ p + 1 solutions to the curve.

The following theorem gives a more precise estimation, but its proof is beyond the scope of the

project.

Theorem 3.2 (Hasse). Let E be an elliptic curve over Fp. Then the number of points on the curve

#E(Fp) = p+ 1− tp with |tp| ≤ 2
√
p [4, Section 5.2].

4. Elliptic Curve Discrete Logarithm Problem. The elliptic curve discrete logarithm problem

(ECDLP) is a computational problem analogous to the discrete logarithm problem discussed ear-

lier. Its formal definition is the following.

Definition 3.4. (Discrete logarithm problem over elliptic curves) Let E by an elliptic curve over a

finite field Fp, and let A and B be points on E. The Elliptic Curve Discrete Logarithm Problem

(ECDLP) is the problem of finding an integer n such that

A = nB

The number n is called the elliptic discrete logarithm of A with respect to B, and it is denoted by

logB A.

14

4.1. Double-and-add algorithm. There exists an efficient algorithm for computing A = nB given

n and B. The interested reader may consult [4, Section 5.3] for a description of this algorithm,

which is very similar to the fast modular exponentiation algorithm discussed in [8, Section 4.1].

4.2. Hardness of ECDLP. As with the discrete logarithm problem in U(p), it is computationally

infeasible to naively compute n by trial-and-error for elliptic curvesE(Fp) where p is very large. In

fact, the ECDLP is thought to be more difficult than the DLP inU(p). A more detailed discussion of

the computational hardness of the problem is outside the scope of this project, but more information

can be found in [4, Chapter 5].

5. Elliptic curves and cryptography. Now that we have defined elliptic curves and shown that

they form an Abelian group, we wish to develop cryptosystems using them. We will begin by

talking about how we might generate public-private key pairs for use in the Elliptic Curve Diffie-

Hellman Exchange and beyond.

5.1. Elliptic curve key generation. Let E be an elliptic curve defined over a finite field Fp. Let P

be a point in E(Fp), and suppose that P has prime order n. Then the cyclic subgroup of E(Fp)

generated by P is

〈P 〉 = {∞, P, 2P, 3P, . . . , (n− 1)P}

The prime p, the equation of the elliptic curve E, and the point P and its order n, are the public

domain parameters. A private key is an integer d that is selected uniformly at random from the

interval [1, n − 1], and the corresponding public key is Q = dP . To reiterate, key generation

follows the following steps:

(1) Select d ∈ [1, n− 1] as the private key

(2) Compute Q = dP as the public key.

5.2. Elliptic curve Diffie-Hellman. The Diffie Hellman problem over an elliptic curve E(Fp) is

similar to that over U(p). If Alice and Bob wished to exchange a key via this method, they would

do the following [4, Section 5.4]:

(1) Alice and Bob agree on a particular elliptic curve E and a point Q ∈ E.

(2) Bob chooses a secret integer b and computes B = bQ. Alice chooses a secret integer a and

computes A = aQ.

(3) Alice and Bob exchange their values.

15

(4) Alice and Bob each compute their shared secret value aB = a(bQ) = b(aQ) = bA.

For Eve to discover Bob and Alice’s shared secret value, she is left to solve the ECDLP to obtain

a or b given A,B, andQ.

5.3. Elliptic ElGamal public key cryptosystem. A plaintext m is first represented as a point M ,

and then encrypted by adding it to kQ where k is a randomly selected integer, and Q is the in-

tended recipient’s public key. The sender transmits the points C1 = kP and C2 = M + kQ to the

recipient who uses her private key d to compute

dC1 = d(kP) = k(dP) = kQ

and thereafter recovers M = C2 − kQ. An eavesdropper who wishes to recover M needs to

compute kQ. This task of computing kQ from the domain parameters, Q, and C1 = kP , is the

elliptic curve analogue of the Diffie-Hellman problem.

6. Encoding with Elliptic Curves. Although elliptic curve cryptosystems are very robust and

secure, they are not without their quirks. In particular, it is not immediately clear how to encode

messages using them. In order to encode a message in string, we first need to convert them to

numeric values (usually binary) by UNICODE, which can convert every language in the world

to their unique numeric correspondence. This step is not interesting, but next, the challenging

problem is constructing a hash function to map those numbers to points on an elliptic curve.

Encoding is an algorithm f to map a message m ∈ {0, 1}l to elements in a group G. Optimally,

we would like to have the bit size of the messages l to be close to the bit size of the group G. If

that is the case, we call the algorithm f an injective encoding [3]. This is not always achievable

for all elliptic curve groups, but one known example was discovered on the curve E : y2 = x3 + b

over finite field Fp with p ≡ 2 (mod 3) by Boneh and Franklin [1]. The optimal map is defined as

f : Fp → E(Fp) \ {∞} given by f(u) = ((u2 − b) 1
3 , u).

Next, we give a process of constructing injective encoding. Assume we have a message in binary

values m ∈ {0, 1}l. We choose a prime p > 5 such that p ≥ 2
2

1−ε l for some fixed constant

0 < ε < 1
2
. Then, we apply the following algorithm. Note that F is probabilistic not an actual

mapping.

I n p u t : an e l l i p t i c c u r v e E(Fp) ,

Ou tpu t : F : {0, 1}l → E(Fp)

Random i n t e g e r g e n e r a t o r :

16

x← xnxn−1 . . . xl+1xl . . . x2x1 ∈ {0, 1, . . . , p− 1} i n base 2 wi th xl . . . x2x1 = m

I f (x (mod p), y) ∈ E(Fp) f o r some y ∈ Fp

t h e n r e t u r n F(m) = x

E l s e

go to Random i n t e g e r g e n e r a t o r

Let us estimate roughly the probability of generating a point on the elliptic curve. Recall that

previously we estimated the number of points on an elliptic curve E over Fp, to be around p+1; if

we eliminate the point at infinity and the possible point with zero y coordinate which have unique x

coordinate, we are left with p−1
2

choices of x coordinates on the curve. Now the generated random

integer x modulo p falls between 0 and p − 1, thus, the chance of x being an x coordinate of the

curveE(Fp) is
(p− 1)/2

p+ 1
∼ 1

2
for large p. The following is a more accurate result on the efficiency

of the algorithm:

Theorem 3.3. If p is large enough, the expected number of iterations in F on any input is less than

3.

The rigorous proof uses the Hasse’s theorem 3.2, Bombieri’s bound and Erdös Turán-Koksma

inequality to show that the compiling time for this algorithm is bounded, and can be found in [3].

This algorithm is shown to be efficient in encoding a message in its binary form; however, it is

not sure if it is genuinely injective, ie, how large a prime is needed to encode messages of certain

length. Besides, we are uncertain about any methods to recover the encoded message.

7. Elliptic Curve Cryptosystem versus other Crytosystems. Why should elliptic curve cryp-

tosystems be used over the more straightforward cryptosystems we discussed earlier? The main

reason is that elliptic curve cryptosystems seem to offer similar security to RSA, but with a smaller

key size and faster processing times [9, Chapter 10]. As a matter of a fact, a 256-bit ECC key is

equivalent in security to a 3072-bit RSA key [6, Section 9.7]. This is of great benefit in limited

bandwidth situations, as the increasingly-large key sizes in RSA are becoming cumbersome.

4. CONCLUSION

When the authors of this paper began their work, they seriously underestimated the level of so-

phistication in the topic of cryptography. Indeed, the goal of “writing a paper about cryptography”

was perhaps a tad ambitious in scope. Nevertheless, the authors hope that the paper provides

17

a coherent overview of some of the most important cryptographic topics from an algebraic and

number-theoretic perspective.

For the interested reader, a plethora of sources books on cryptography are available. Those in-

terested in gaining a practical, working knowledge of cryptography may be interested in Christof

Paar’s book Understanding Cryptography [6] and its accompanying lectures posted freely online.

Those with a craving for mathematical depth, however, may find more substance in Jeffrey Hoff-

stein’s Introduction to Mathematical Cryptography [4]. Finally, the those readers who are focused

on elliptic curve cryptography should certainly consult Lawrence Washington’s Elliptic Curves:

Number Theory and Cryptography [10].

REFERENCES

[1] Boneh, Dan, and Matt Franklin. 2001. “Identity-Based Encryption from the Weil Pairing.” In Advances in Cryp-

tology — CRYPTO 2001, edited by Joe Kilian, 213–29. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer. https://doi.org/10.1007/3-540-44647-8 13.

[2] Buchmann, Johannes. 2004. Introduction to Cryptography. 2nd edition. Undergraduate Texts in Mathematics. New

York, NY: Springer.

[3] Fouque, Pierre-Alain and Joux, Antoine and Tibouchi, Mehdi. 2013. Injective Encodings to Elliptic Curves,

203–218, Information Security and Privacy Lecture Notes in Computer Science.

[4] Hoffstein, Jeffrey, Jill Catherine Pipher, and Joseph H. Silverman. 2008. An Introduction to Mathematical Cryp-

tography. Undergraduate Texts in Mathematics. New York; London: Springer.

[5] Lang Serge, 1987, Elliptic functions. New York, Verlag: Springer.

[6] Paar, Christof, and Jan Pelzl. 2010. Understanding Cryptography: A Textbook for Students and Practitioners.

Heidelberg; New York: Springer.

[7] Rubinstein-Salzedo, Simon. 2018. Cryptography. New York, NY: Springer Berlin Heidelberg.

[8] Rosen, Kenneth H. 2011. Elementary Number Theory and Its Applications. 6th ed. Boston: Addison-Wesley.

[9] Stallings, William. 2017. Cryptography and Network Security: Principles and Practice. Seventh edition, Global

edition. Boston: Pearson.

[10] Washington, Lawrence C. 2003. Elliptic Curves: Number Theory and Cryptography. Discrete Mathematics and

Its Applications. Boca Raton: Chapman & Hall/CRC.

Email address: schau@unbc.ca

Email address: wlan@unbc.ca

Email address: shaw5@unbc.ca

18

