Conformal Mapping and its Application to Laplace's Equations

Weixian(Kai) Lan
Department of Mathematics and Statistics
University of Northern British Columbia

Interdisciplinary Weekly Seminar Series
Sept. 192019

Email: wlan@unbc.ca
$1 / 27$

Table of Contents

Motivation
Application of Laplace's equations
Goals
Laplace's equation
Introduction
Laplace's equations: main techniques on simple domains
Examples
Conformal mapping
Invariance of Laplace's equation
Introduction
Möbius transform
Example
Schwarz-Christoffel transformation
Example

Motivation

Application of Laplace's equations:

- heat flow: steady-state temperature distribution

$3 / 27$

Motivation

Application of Laplace's equations:

- heat flow: steady-state temperature distribution

- aerodynamics: laminar flow over airfoils

Goals

- Solving Laplace's equations on simple domains by

Goals

- Solving Laplace's equations on simple domains by separation of variables or Fourier transform
$4 / 27$

Goals

- Solving Laplace's equations on simple domains by separation of variables or Fourier transform
- Solving Laplace's equations on more complicated domains using
$4 / 27$

Goals

- Solving Laplace's equations on simple domains by separation of variables or Fourier transform
- Solving Laplace's equations on more complicated domains using conformal mapping
$4 / 27$

Where are we

Motivation
Application of Laplace's equations
Goals
Laplace's equation
Introduction
Laplace's equations: main techniques on simple domains
Examples
Conformal mapping
Invariance of Laplace's equation
Introduction
Möbius transform
Example
Schwarz-Christoffel transformation
Example

Laplace's equation: introduction

A partial differential equation (PDE) is a differential equation involving partial derivatives with respect to more than one independent variable.

Laplace's equation: introduction

A partial differential equation (PDE) is a differential equation involving partial derivatives with respect to more than one independent variable.

Definition

Laplace's equation is the PDE of the form

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

where $u(x, y)$ is a real-valued function.

Laplace's equation: introduction

A partial differential equation (PDE) is a differential equation involving partial derivatives with respect to more than one independent variable.

Definition
Laplace's equation is the PDE of the form

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

where $u(x, y)$ is a real-valued function.
We will focus on Dirichlet boundary conditions in our case.

Laplace's equation: main techniques on simple domains
There are two main techniques:

Laplace's equation: main techniques on simple domains

There are two main techniques:

- Separation of variables

$7 / 27$

Laplace's equation: main techniques on simple domains

There are two main techniques:

- Separation of variables

- Fourier transform

$7 / 27$

Laplace's equation: main techniques on simple domains

There are two main techniques:

- Separation of variables

- Fourier transform

Next, we will have examples on circular domain and upper half-plane.

Examples: Separation of variables on a disk

Laplace's equation in the polar form: $r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0$

Separation of variables:

$$
\begin{aligned}
& u(r, \theta)=R(r) \Theta(\theta) \\
& \Longrightarrow \frac{r^{2} R^{\prime \prime}+r R^{\prime}}{-R}=\frac{\Theta^{\prime \prime}}{\Theta}= \pm \lambda
\end{aligned}
$$

Examples: Separation of variables on a disk

Laplace's equation in the polar form: $r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0$

Separation of variables:

$$
\begin{aligned}
& u(r, \theta)=R(r) \Theta(\theta) \\
& \Longrightarrow \frac{r^{2} R^{\prime \prime}+r R^{\prime}}{-R}=\frac{\Theta^{\prime \prime}}{\Theta}= \pm \lambda
\end{aligned}
$$

Step 1: Eigenvalue problem
$\Theta^{\prime \prime}(\theta)=-\lambda \Theta$
$\Theta(-\pi)=\Theta(\pi)$
$\Theta^{\prime}(-\pi)=\Theta^{\prime}(\pi)$
$\lambda=n^{2}(n \in \mathbb{N}), \Theta_{n}(\theta)= \begin{cases}a_{n} \cos n \theta+b_{n} \sin n \theta & n=1,2,3 \ldots \\ \frac{a_{0}}{2} & n=0 \quad \text { U/BC }\end{cases}$

STEP 2: Solving for $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0$
Guess $R(r)=r^{p} \Longrightarrow R_{n}(r)=C_{n} r^{n}+D_{n} r^{-n}$
Well defined at $r=0 \Longrightarrow R_{n}(r)=C_{n} r^{n} \quad(n=0,1,2,3, \ldots)$

STEP 2: Solving for $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0$
Guess $R(r)=r^{p} \Longrightarrow R_{n}(r)=C_{n} r^{n}+D_{n} r^{-n}$
Well defined at $r=0 \Longrightarrow R_{n}(r)=C_{n} r^{n} \quad(n=0,1,2,3, \ldots)$
Step 3: Combine two variables
By superposition principle,
$u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)$

Step 2: Solving for $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0$
Guess $R(r)=r^{p} \Longrightarrow R_{n}(r)=C_{n} r^{n}+D_{n} r^{-n}$
Well defined at $r=0 \Longrightarrow R_{n}(r)=C_{n} r^{n} \quad(n=0,1,2,3, \ldots)$
Step 3: Combine two variables
By superposition principle,
$u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)$
STEP 4: Apply boundary conditions and obtain the solution
$u(\rho, \theta)=f(\theta) \Longrightarrow f(\theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \rho^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)$
By Fourier series formula, $\left\{\begin{array}{l}a_{n}=\frac{1}{\pi \rho^{n}} \int_{-\pi}^{\pi} f(\phi) \cos n \phi \mathrm{~d} \phi \\ b_{n}=\frac{1}{\pi \rho^{n}} \int_{-\pi}^{\pi} f(\phi) \sin n \phi \mathrm{~d} \phi \text { U/ BC }\end{array}\right.$

Applying termwise integration, trigonometric identity and geometric series formula, we obtain the solution

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi) \frac{\rho^{2}-r^{2}}{\rho^{2}+r^{2}-2 \rho r \cos (\theta-\phi)} \mathrm{d} \phi
$$

$10 / 27$

Applying termwise integration, trigonometric identity and geometric series formula, we obtain the solution

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi) \frac{\rho^{2}-r^{2}}{\rho^{2}+r^{2}-2 \rho r \cos (\theta-\phi)} \mathrm{d} \phi
$$

Remark

Note that this is the Poisson Integral Formula and

$$
K\left(\theta=\frac{\rho^{2}-r^{2}}{2 \pi\left(\rho^{2}+r^{2}-2 \rho r \cos (\theta)\right)}\right.
$$

is the Green's function for Laplace's equation on a disk.

Examples: Fourier transform on upper half-plane

Consider Laplace's equation:

$$
u_{x x}+u_{y y}=0
$$

Examples: Fourier transform on upper half-plane

Consider Laplace's equation:
$u_{x x}+u_{y y}=0$
Assumption:

- $f(x)$ and $u(x, y)$ can be decomposed by Fourier transform formula
- $\lim _{x \rightarrow-\infty} u(x, y)=0=\lim _{x \rightarrow \infty} u(x, y)$ and $\lim _{y \rightarrow \infty} u(x, y)=0$

Examples: Fourier transform on upper half-plane

Consider Laplace's equation:

$$
u_{x x}+u_{y y}=0
$$

Assumption:

- $f(x)$ and $u(x, y)$ can be decomposed by Fourier transform formula
- $\lim _{x \rightarrow-\infty} u(x, y)=0=\lim _{x \rightarrow \infty} u(x, y)$ and $\lim _{y \rightarrow \infty} u(x, y)=0$

Fourier transform with repect to x :
$\hat{u}(\omega, y)=\int_{-\infty}^{\infty} u(x, y) e^{-i \omega x} \mathrm{~d} x=\frac{1}{i \omega} \hat{u}_{x}(\omega, y)$
Similarly, $\hat{u}_{x x}(\omega, y)=(i \omega) \hat{u}_{x}(\omega, y)=(i \omega)^{2} \hat{u}(\omega, y)$

Step 1: Find a general solution:
Applying Fourier transform formula to $u_{x x}+u_{y y}=0$ gives

$$
\begin{gathered}
(i \omega)^{2} \hat{u}(\omega, y)+\hat{u}_{y y}(\omega, y)=0 \\
\Longrightarrow \hat{u}(\omega, y)=C_{1}(\omega) e^{\omega y}+C_{2}(\omega) e^{-\omega y} .
\end{gathered}
$$

Since $u(x, y) \rightarrow 0$ as $y \rightarrow \infty$, it yields

$$
\begin{equation*}
\hat{u}(\omega, y)=C(\omega) e^{-|\omega| y} \quad \omega \in(-\infty, \infty) \tag{1}
\end{equation*}
$$

$12 / 27$

Step 1: Find a general solution:
Applying Fourier transform formula to $u_{x x}+u_{y y}=0$ gives

$$
\begin{gathered}
(i \omega)^{2} \hat{u}(\omega, y)+\hat{u}_{y y}(\omega, y)=0 \\
\Longrightarrow \hat{u}(\omega, y)=C_{1}(\omega) e^{\omega y}+C_{2}(\omega) e^{-\omega y}
\end{gathered}
$$

Since $u(x, y) \rightarrow 0$ as $y \rightarrow \infty$, it yields

$$
\begin{equation*}
\hat{u}(\omega, y)=C(\omega) e^{-|\omega| y} \quad \omega \in(-\infty, \infty) \tag{1}
\end{equation*}
$$

STEP 2: Apply boundary condition:
Denote Boundary condition in Fourier form: $\hat{f}(\omega)=\mathcal{F}(f(x))$.
Then,

$$
\begin{aligned}
(1) & \Longrightarrow \hat{u}(\omega, 0)=\hat{f}(\omega)=C(\omega) \\
& \Longrightarrow \hat{u}(\omega, y)=\hat{f}(\omega) e^{-|\omega| y}
\end{aligned}
$$

Step 3: Apply the inverse Fourier transform formula
$u(x, y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega| x} e^{i \omega x} \mathrm{~d} \omega$
$13 / 27$

Step 3: Apply the inverse Fourier transform formula
$u(x, y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega| x} e^{i \omega x} \mathrm{~d} \omega$
Note that $\hat{f}(\omega)=\int_{-\infty}^{\infty} f(\tau) e^{-i \omega \tau} \mathrm{~d} \tau$, and by Fubini's theorem

$$
\begin{aligned}
u(x, y) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\tau)\left(\int_{-\infty}^{0} e^{i \omega(x-\tau)+\omega y} \mathrm{~d} \omega\right. \\
& \left.+\int_{0}^{\infty} e^{i \omega(x-\tau)-\omega y} \mathrm{~d} \omega\right) \mathrm{d} \tau
\end{aligned}
$$

STEP 3: Apply the inverse Fourier transform formula
$u(x, y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega| x} e^{i \omega x} \mathrm{~d} \omega$
Note that $\hat{f}(\omega)=\int_{-\infty}^{\infty} f(\tau) e^{-i \omega \tau} \mathrm{~d} \tau$, and by Fubini's theorem

$$
\begin{aligned}
u(x, y) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\tau)\left(\int_{-\infty}^{0} e^{i \omega(x-\tau)+\omega y} \mathrm{~d} \omega\right. \\
& \left.+\int_{0}^{\infty} e^{i \omega(x-\tau)-\omega y} \mathrm{~d} \omega\right) \mathrm{d} \tau \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^{2}+(x-\tau)^{2}} \mathrm{~d} \tau \quad(y>0)
\end{aligned}
$$

STEP 3: Apply the inverse Fourier transform formula
$u(x, y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega| x} e^{i \omega x} \mathrm{~d} \omega$
Note that $\hat{f}(\omega)=\int_{-\infty}^{\infty} f(\tau) e^{-i \omega \tau} \mathrm{~d} \tau$, and by Fubini's theorem

$$
\begin{aligned}
u(x, y) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\tau)\left(\int_{-\infty}^{0} e^{i \omega(x-\tau)+\omega y} \mathrm{~d} \omega\right. \\
& \left.+\int_{0}^{\infty} e^{i \omega(x-\tau)-\omega y} \mathrm{~d} \omega\right) \mathrm{d} \tau \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^{2}+(x-\tau)^{2}} \mathrm{~d} \tau \quad(y>0)
\end{aligned}
$$

Remark

The Green's function on the upper half-plane is

$$
K(x)=\frac{y}{\pi\left(y^{2}+x^{2}\right)} .
$$

Where are we

Motivation
Application of Laplace's equations
Goals
Laplace's equation
Introduction
Laplace's equations: main techniques on simple domains
Examples
Conformal mapping
Invariance of Laplace's equation
Introduction
Möbius transform
Example
Schwarz-Christoffel transformation
Example

Conformal mapping: invariance of Laplace's equations

Let's explore the property of an analytic map before introducing conformal map.

Theorem
Solutions of Laplace's equation on different domains are " preserved" under analytic map.

We shall prove it by the chain rule.

proof

Let $f: w(u, v) \rightarrow z(x, y)$ be analytic on domain D and $\Phi(x, y)$ be the harmonic function on D. Then Cauchy-Riemann equations are satisfied as follows:

$$
\begin{align*}
& \frac{\partial x}{\partial u}=\frac{\partial y}{\partial v} \tag{2}\\
& \frac{\partial x}{\partial v}=-\frac{\partial y}{\partial u} \tag{3}
\end{align*}
$$

proof

Let $f: w(u, v) \rightarrow z(x, y)$ be analytic on domain D and $\Phi(x, y)$ be the harmonic function on D. Then Cauchy-Riemann equations are satisfied as follows:

$$
\begin{align*}
& \frac{\partial x}{\partial u}=\frac{\partial y}{\partial v} \tag{2}\\
& \frac{\partial x}{\partial v}=-\frac{\partial y}{\partial u} \tag{3}
\end{align*}
$$

Applying the chain rule on $\psi_{u u}$ yields

$$
\Phi_{u u}=\frac{\partial}{\partial u}\left(\Phi_{x} \frac{\partial x}{\partial u}+\Phi_{y} \frac{\partial y}{\partial u}\right)
$$

proof

Let $f: w(u, v) \rightarrow z(x, y)$ be analytic on domain D and $\Phi(x, y)$ be the harmonic function on D. Then Cauchy-Riemann equations are satisfied as follows:

$$
\begin{align*}
& \frac{\partial x}{\partial u}=\frac{\partial y}{\partial v} \tag{2}\\
& \frac{\partial x}{\partial v}=-\frac{\partial y}{\partial u} \tag{3}
\end{align*}
$$

Applying the chain rule on $\psi_{u u}$ yields

$$
\begin{aligned}
\Phi_{u u} & =\frac{\partial}{\partial u}\left(\Phi_{x} \frac{\partial x}{\partial u}+\Phi_{y} \frac{\partial y}{\partial u}\right) \\
& =\Phi_{x x}\left(\frac{\partial x}{\partial u}\right)^{2}+\Phi_{y y}\left(\frac{\partial y}{\partial u}\right)^{2} \\
& +2 \Phi_{x y}\left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial u}\right)+\Phi_{x} \frac{\partial^{2} x}{\partial u^{2}}+\Phi_{y} \frac{\partial^{2} y}{\partial u^{2}}
\end{aligned}
$$

similarly,

$$
\begin{aligned}
\Phi_{v v} & =\Phi_{x x}\left(\frac{\partial x}{\partial v}\right)^{2}+\Phi_{y y}\left(\frac{\partial y}{\partial v}\right) \\
& +2 \Phi_{x y}\left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}\right)+\Phi_{x} \frac{\partial^{2} x}{\partial v^{2}}+\Phi_{y} \frac{\partial^{2} y}{\partial v^{2}}
\end{aligned}
$$

$17 / 27$
similarly,

$$
\begin{aligned}
\Phi_{v v} & =\Phi_{x x}\left(\frac{\partial x}{\partial v}\right)^{2}+\Phi_{y y}\left(\frac{\partial y}{\partial v}\right) \\
& +2 \Phi_{x y}\left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}\right)+\Phi_{x} \frac{\partial^{2} x}{\partial v^{2}}+\Phi_{y} \frac{\partial^{2} y}{\partial v^{2}}
\end{aligned}
$$

Combining equations 2 and 3 , we have

$$
\begin{aligned}
\Phi_{u u}+\Phi_{v v} & =\Phi_{x x}\left[\left(\frac{\partial x}{\partial u}\right)^{2}+\left(\frac{\partial x}{\partial v}\right)^{2}\right]+\Phi_{y y}\left[\left(\frac{\partial y}{\partial u}\right)^{2}\right. \\
& \left.+\left(\frac{\partial y}{\partial v}\right)^{2}\right]+2 \Phi_{x y}\left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}+\frac{\partial x}{\partial u} \frac{\partial y}{\partial u}\right) \\
& +\Phi_{x}\left(\frac{\partial^{2} x}{\partial u^{2}}+\frac{\partial^{2} x}{\partial v^{2}}\right)+\Phi_{y}\left(\frac{\partial^{2} y}{\partial u^{2}}+\frac{\partial^{2} y}{\partial v^{2}}\right)
\end{aligned}
$$

similarly,

$$
\begin{aligned}
\Phi_{v v} & =\Phi_{x x}\left(\frac{\partial x}{\partial v}\right)^{2}+\Phi_{y y}\left(\frac{\partial y}{\partial v}\right) \\
& +2 \Phi_{x y}\left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}\right)+\Phi_{x} \frac{\partial^{2} x}{\partial v^{2}}+\Phi_{y} \frac{\partial^{2} y}{\partial v^{2}}
\end{aligned}
$$

Combining equations 2 and 3 , we have

$$
\begin{aligned}
\Phi_{u u}+\Phi_{v v} & =\Phi_{x x}\left[\left(\frac{\partial x}{\partial u}\right)^{2}+\left(\frac{\partial x}{\partial v}\right)^{2}\right]+\Phi_{y y}\left[\left(\frac{\partial y}{\partial u}\right)^{2}\right. \\
& \left.+\left(\frac{\partial y}{\partial v}\right)^{2}\right]+2 \Phi_{x y}\left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}+\frac{\partial x}{\partial u} \frac{\partial y}{\partial u}\right) \\
& +\Phi_{x}\left(\frac{\partial^{2} x}{\partial u^{2}}+\frac{\partial^{2} x}{\partial v^{2}}\right)+\Phi_{y}\left(\frac{\partial^{2} y}{\partial u^{2}}+\frac{\partial^{2} y}{\partial v^{2}}\right) \\
& =|\nabla x(u, v)|^{2}\left(\Phi_{x x}+\Phi_{y y}\right)=0
\end{aligned}
$$

Conformal mapping: introduction

Definition

A function f on \mathbb{C} is conformal
if it preserves angles locally.

[^0]
Conformal mapping: introduction

Definition

A function f on \mathbb{C} is conformal
if it preserves angles locally.
Theorem
An analytic function f is
conformal at z_{0} if its derivative
$f^{\prime}\left(z_{0}\right) \neq 0$.

[^1]
Conformal mapping: introduction

Definition

A function f on \mathbb{C} is conformal if it preserves angles locally.

Theorem
An analytic function f is conformal at z_{0} if its derivative $f^{\prime}\left(z_{0}\right) \neq 0$.

Figure: Mercator projection ${ }^{1}$
We will introduce two mappings: Möbius transformation and Schwarz-Christoffel transformation.

[^2]
Conformal mapping: Möbius transform

Definition

Möbius transform is a complex-valued function in form of

$$
w=f(z)=\frac{a z+b}{c z+d}
$$

where a, b, c and d are complex constants with $a d \neq b c$.

Conformal mapping: Möbius transform

Definition

Möbius transform is a complex-valued function in form of

$$
w=f(z)=\frac{a z+b}{c z+d}
$$

where a, b, c and d are complex constants with $a d \neq b c$.

Conformal mapping: Möbius transform

Definition

Möbius transform is a complex-valued function in form of

$$
w=f(z)=\frac{a z+b}{c z+d}
$$

where a, b, c and d are complex constants with $a d \neq b c$.

Theorem

Möbius transform is a conformal map.

Example: upper half-plane to disk

Mapping function: $w(u, v)=\rho \frac{i-z}{i+z} \leftrightarrow z(x, y)=\frac{i \rho-i w}{w+\rho}$

Example: upper half-plane to disk

Mapping function: $w(u, v)=\rho \frac{i-z}{i+z} \leftrightarrow z(x, y)=\frac{i \rho-i w}{w+\rho}$

$$
\Longrightarrow\left\{\begin{array}{l}
x=\frac{2 \rho r \sin \theta}{\rho^{2}+r^{2}+2 \rho r \cos \theta} \\
y=\frac{\rho^{2}-r^{2}}{\rho^{2}+r^{2}+2 \rho r \cos \theta}
\end{array}\right.
$$

Recall the formula of solution on upper half-plane:
$\Phi(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^{2}+(x-\tau)^{2}} \mathrm{~d} \tau$

Recall the formula of solution on upper half-plane:

$$
\Phi(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^{2}+(x-\tau)^{2}} \mathrm{~d} \tau
$$

Thus, replacing x, y with r and θ gives us

$$
\Phi(r, \theta)=\frac{1}{\pi} \int_{\tau(-\infty)}^{\tau(\infty)} f(\phi(\tau)) \frac{y(r, \theta)}{y^{2}(r, \theta)+(x(r, \theta)-\tau(\phi))^{2}} \mathrm{~d}(\tau(\phi))
$$

Recall the formula of solution on upper half-plane:
$\Phi(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^{2}+(x-\tau)^{2}} \mathrm{~d} \tau$
Thus, replacing x, y with r and θ gives us

$$
\begin{aligned}
\Phi(r, \theta) & =\frac{1}{\pi} \int_{\tau(-\infty)}^{\tau(\infty)} f(\phi(\tau)) \frac{y(r, \theta)}{y^{2}(r, \theta)+(x(r, \theta)-\tau(\phi))^{2}} \mathrm{~d}(\tau(\phi)) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi) \frac{\rho^{2}-r^{2}}{\rho^{2}+r^{2}-2 \rho r \cos (\theta-\phi)} \mathrm{d} \phi
\end{aligned}
$$

where $\tau(\phi)$ is derived from $x(\rho, \theta)$ and $f(\phi)$ is the boundary condition at $r=\rho$ on the disk.

Conformal mapping: Schwarz-Christoffel transformation

SC Mapping Theorem²

A one-to-one conformal function that maps the upper-half plane onto the polygon is

$$
f(z)=A \int_{0}^{z}\left(\zeta-x_{1}\right)^{\frac{\theta_{1}}{\pi}}\left(\zeta-x_{2}\right)^{\frac{\theta_{2}}{\pi}} \ldots\left(\zeta-x_{n-1}\right)^{\frac{\theta_{n-1}}{\pi}} \mathrm{~d} \zeta+B .
$$

[^3] engineering, 1976.
$22 / 27$

Conformal mapping: Schwarz-Christoffel transformation

SC Mapping Theorem²

A one-to-one conformal function that maps the upper-half plane onto the polygon is

$$
f(z)=A \int_{0}^{z}\left(\zeta-x_{1}\right)^{\frac{\theta_{1}}{\pi}}\left(\zeta-x_{2}\right)^{\frac{\theta_{2}}{\pi}} \ldots\left(\zeta-x_{n-1}\right)^{\frac{\theta_{n-1}}{\pi}} \mathrm{~d} \zeta+B .
$$

Example: flow over a corner

Figure: From upper half-plane to the plane excluding the third quadrant
STEP 1: Find the mapping function
By SC mapping formula, we have

$$
w=-i z^{\frac{3}{2}}=-i|z|^{\frac{3}{2}} e^{i \frac{3}{2}(\operatorname{Arg} z)} \leftrightarrow
$$

Example: flow over a corner

Figure: From upper half-plane to the plane excluding the third quadrant
Step 1: Find the mapping function
By SC mapping formula, we have

$$
w=-i z^{\frac{3}{2}}=-i|z|^{\frac{3}{2}} e^{i \frac{3}{2}(\operatorname{Arg} z)} \leftrightarrow z=|w|^{\frac{2}{3}} e^{i \frac{2}{3}\left(\operatorname{Arg} w+\frac{\pi}{2}\right)}
$$

Example: flow over a corner

Figure: From upper half-plane to the plane excluding the third quadrant
Step 1: Find the mapping function
By SC mapping formula, we have

$$
\begin{aligned}
w & =-i z^{\frac{3}{2}}=-i|z|^{\frac{3}{2}} e^{i \frac{3}{2}(\operatorname{Arg} z)} \leftrightarrow z=|w|^{\frac{2}{3}} e^{i \frac{2}{3}\left(\operatorname{Arg} w+\frac{\pi}{2}\right)} \\
\Longrightarrow & \left\{\begin{array}{l}
x=\left(u^{2}+v^{2}\right)^{\frac{1}{3}} \cos \left(\frac{2}{3} \operatorname{Arg} w+\frac{\pi}{3}\right) \\
y
\end{array}=\left(u^{2}+v^{2}\right)^{\frac{1}{3}} \sin \left(\frac{2}{3} \operatorname{Arg} w+\frac{\pi}{3}\right)\right.
\end{aligned}
$$

Recall the formula of solution to the upper half-plane:

$$
\Phi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{y^{2}+(x-\tau)^{2} \mathrm{~d} \tau}
$$

Recall the formula of solution to the upper half-plane:

$$
\Phi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{y^{2}+(x-\tau)^{2} \mathrm{~d} \tau}
$$

Replacing x, y with u and v :

$$
\Phi(u, v)=\frac{2 y}{3 \pi} \int_{-\infty}^{0}\left(\frac{(-t)^{\frac{1}{3}} f_{1}(t)}{y^{2}+\left(x+(-t)^{\frac{2}{3}}\right)^{2}}+\int_{-\infty}^{0} \frac{(-t)^{\frac{1}{3}} f_{2}(t)}{y^{2}+\left(x-(-t)^{\frac{2}{3}}\right)^{2}}\right) \mathrm{d} t
$$

Recall the formula of solution to the upper half-plane:

$$
\Phi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{y^{2}+(x-\tau)^{2} \mathrm{~d} \tau}
$$

Replacing x, y with u and v :

$$
\Phi(u, v)=\frac{2 y}{3 \pi} \int_{-\infty}^{0}\left(\frac{(-t)^{\frac{1}{3}} f_{1}(t)}{y^{2}+\left(x+(-t)^{\frac{2}{3}}\right)^{2}}+\int_{-\infty}^{0} \frac{(-t)^{\frac{1}{3}} f_{2}(t)}{y^{2}+\left(x-(-t)^{\frac{2}{3}}\right)^{2}}\right) \mathrm{d} t
$$

where $x(u, v)=\left(\left(u^{2}+v^{2}\right)^{\frac{1}{3}} \cos \left(\frac{2}{3} \operatorname{Arg} w+\frac{\pi}{3}\right)\right)^{2}$,
$y(u, v)=\left(\left(u^{2}+v^{2}\right)^{\frac{1}{3}} \sin \left(\frac{2}{3} \operatorname{Arg} w+\frac{\pi}{3}\right)+(-t)^{\frac{2}{3}}\right)^{2}$ and
$t=\left\{\begin{array}{ll}-(-\tau)^{\frac{3}{2}} & \tau<0 \\ -\tau^{\frac{3}{2}} & \tau>0\end{array}\right.$.

Conclusion

What we have learned or reviewed:

- application of Laplace's equation

What I have realized:

Conclusion

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques

What I have realized:
$25 / 27$

Conclusion

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques
- introduction to conformal mapping

What I have realized:
$25 / 27$

Conclusion

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques
- introduction to conformal mapping

What I have realized:

- conformal mapping can solve some complicated domains
$25 / 27$

Conclusion

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques
- introduction to conformal mapping

What I have realized:

- conformal mapping can solve some complicated domains
- SC map is difficult to apply, considering the complicated integration and inverse map

Questions

Thanks for your attendance.
$26 / 27$

Questions

Thanks for your attendance. Any questions welcome!

Questions

Thanks for your attendance.
Any questions welcome!
Short questions? Ask me now!
$26 / 27$

Questions

Thanks for your attendance.
Any questions welcome!
Short questions? Ask me now!
Long questions? Ask me in person.
$26 / 27$

Questions

Thanks for your attendance.
Any questions welcome!
Short questions? Ask me now!
Long questions? Ask me in person.

One of my favorite quotes

"The one who knows all the answers has not been asked all the questions."

- Confucius

References

Lan, Weixian: Conformal mapping and its application in Laplace's equation, in: 2019.
囯 Saff, Edward B and Arthur David Snider: Fundamentals of complex analysis for mathematics, science, and engineering, 1976.
$27 / 27$

[^0]: ${ }^{1}$ Daniel R. Strebe, 15 December 2011

[^1]: ${ }^{1}$ Daniel R. Strebe, 15 December 2011

[^2]: ${ }^{1}$ Daniel R. Strebe, 15 December 2011

[^3]: ${ }^{2}$ Edward B Saff/Arthur David Snider: Fundamentals of complex analysis for mathematics, science, and

