Conformal Mapping and its Application to Laplace's Equations

Weixian(Kai) Lan

Department of Mathematics and Statistics University of Northern British Columbia

Interdisciplinary Weekly Seminar Series Sept.19 2019

Email: wlan@unbc.ca

1/27

Table of Contents

Motivation

Application of Laplace's equations

Goals

Laplace's equation

Introduction

Laplace's equations: main techniques on simple domains

Examples

Conformal mapping

Invariance of Laplace's equation

Introduction

Möbius transform

Example

Schwarz-Christoffel transformation

Example

Motivation

Application of Laplace's equations:

heat flow: steady-state temperature distribution

Motivation

Application of Laplace's equations:

heat flow: steady-state temperature distribution

aerodynamics: laminar flow over airfoils

Solving Laplace's equations on simple domains by

 Solving Laplace's equations on simple domains by separation of variables or Fourier transform

Goals

- Solving Laplace's equations on simple domains by separation of variables or Fourier transform
- Solving Laplace's equations on more complicated domains using

Goals

- Solving Laplace's equations on simple domains by separation of variables or Fourier transform
- Solving Laplace's equations on more complicated domains using conformal mapping

Where are we

Motivation

Application of Laplace's equations Goals

Laplace's equation

Introduction

Laplace's equations: main techniques on simple domains Examples

Conformal mapping

Invariance of Laplace's equation Introduction Möbius transform Example Schwarz-Christoffel transformatio Example

Laplace's equation: introduction

A **partial differential equation (PDE)** is a differential equation involving partial derivatives with respect to more than one independent variable.

Laplace's equation: introduction

A **partial differential equation (PDE)** is a differential equation involving partial derivatives with respect to more than one independent variable.

Definition

Laplace's equation is the PDE of the form

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

where u(x, y) is a real-valued function.

Laplace's equation: introduction

A **partial differential equation (PDE)** is a differential equation involving partial derivatives with respect to more than one independent variable.

Definition

Laplace's equation is the PDE of the form

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

where u(x, y) is a real-valued function.

We will focus on Dirichlet boundary conditions in our case.

There are two main techniques:

There are two main techniques:

Separation of variables

There are two main techniques:

Separation of variables

Fourier transform

u (ω , y) = F(u (x , y))

リハカス ・ロ・・1日・・1日・・1日・ ・1/27

There are two main techniques:

Separation of variables

Fourier transform

u (ω , y) = F(u (x , y))

Next, we will have examples on circular domain and upper half-plane.

Examples: Separation of variables on a disk

Laplace's equation in the polar form: $r^2 u_{rr} + ru_r + u_{\theta\theta} = 0$ **Separation of variables**: $u(r, \theta) = R(r) \Theta(\theta)$ $\Rightarrow \frac{r^2 R'' + r R'}{-R} = \frac{\Theta''}{\Theta} = \pm \lambda$ $u(r, -\pi) = u(r, \pi)$

Examples: Separation of variables on a disk

Laplace's equation in the polar form: $r^2 u_{rr} + r u_r + u_{\theta\theta} = 0$

8 / 27

STEP 2: Solving for $r^2 R'' + r R' - n^2 R = 0$ Guess $R(r) = r^p \implies R_n(r) = C_n r^n + D_n r^{-n}$ Well defined at $r = 0 \implies R_n(r) = C_n r^n$ (n = 0, 1, 2, 3, ...)

STEP 2: Solving for $r^2 R'' + r R' - n^2 R = 0$ Guess $R(r) = r^p \implies R_n(r) = C_n r^n + D_n r^{-n}$ Well defined at $r = 0 \implies R_n(r) = C_n r^n$ (n = 0, 1, 2, 3, ...)

 $\mathbf{S}\mathbf{T}\mathbf{E}\mathbf{P}$ 3: Combine two variables

By superposition principle,

$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} r^n (a_n \cos n\theta + b_n \sin n\theta)$$

STEP 2: Solving for $r^2 R'' + r R' - n^2 R = 0$ Guess $R(r) = r^p \implies R_n(r) = C_n r^n + D_n r^{-n}$ Well defined at $r = 0 \implies R_n(r) = C_n r^n$ (n = 0, 1, 2, 3, ...)

 $\mathbf{S}_{\mathbf{T}\mathbf{E}\mathbf{P}}$ 3: Combine two variables

By superposition principle,

$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} r^n \left(a_n \cos n\theta + b_n \sin n\theta\right)$$

STEP 4: Apply boundary conditions and obtain the solution

$$u(\rho,\theta) = f(\theta) \implies f(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \rho^n (a_n \cos n \, \theta + b_n \sin n \, \theta)$$

By Fourier series formula, $\begin{cases} a_n = \frac{1}{\pi \rho^n} \int_{-\pi}^{\pi} f(\phi) \cos n \phi \, d\phi \\ b_n = \frac{1}{\pi \rho^n} \int_{-\pi}^{\pi} f(\phi) \sin n \phi \, d\phi \end{cases}$

Applying termwise integration, trigonometric identity and geometric series formula, we obtain the solution

$$u(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\phi) \frac{\rho^2 - r^2}{\rho^2 + r^2 - 2\rho r \cos(\theta - \phi)} \, \mathrm{d}\phi$$

Applying termwise integration, trigonometric identity and geometric series formula, we obtain the solution

$$u(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\phi) \frac{\rho^2 - r^2}{\rho^2 + r^2 - 2\rho r \cos(\theta - \phi)} \, \mathrm{d}\phi$$

Remark

Note that this is the Poisson Integral Formula and

$$K(\theta = \frac{\rho^2 - r^2}{2\pi \left(\rho^2 + r^2 - 2\rho r \cos\left(\theta\right)\right)}$$

is the Green's function for Laplace's equation on a disk.

Examples: Fourier transform on upper half-plane

Consider Laplace's equation:

$$u_{xx} + u_{yy} = 0$$

Examples: Fourier transform on upper half-plane

Examples: Fourier transform on upper half-plane

Fourier transform with repect to x:

$$\hat{u}(\omega, y) = \int_{-\infty}^{\infty} u(x, y) e^{-i\omega x} dx = \frac{1}{i\omega} \hat{u}_{x}(\omega, y)$$

Similarly, $\hat{u}_{xx}(\omega, y) = (i\omega) \hat{u}_{x}(\omega, y) = (i\omega)^{2} \hat{u}(\omega, y)$

11/27

STEP 1: Find a general solution:

Applying Fourier transform formula to $u_{xx} + u_{yy} = 0$ gives

$$(i\omega)^2 \hat{u}(\omega, y) + \hat{u}_{yy}(\omega, y) = 0$$

$$\implies \hat{u}(\omega, y) = C_1(\omega) e^{\omega y} + C_2(\omega) e^{-\omega y}.$$

Since $u(x,y) \to 0$ as $y \to \infty$, it yields

$$\hat{u}(\omega, y) = \mathcal{C}(\omega) e^{-|\omega|y} \quad \omega \in (-\infty, \infty).$$
 (1)

STEP 1: Find a general solution:

Applying Fourier transform formula to $u_{xx} + u_{yy} = 0$ gives

$$(i\omega)^2 \hat{u}(\omega, y) + \hat{u}_{yy}(\omega, y) = 0$$

$$\implies \hat{u}(\omega, y) = C_1(\omega) e^{\omega y} + C_2(\omega) e^{-\omega y}.$$

Since $u(x, y) \to 0$ as $y \to \infty$, it yields

$$\hat{u}(\omega, y) = \mathcal{C}(\omega) e^{-|\omega|y} \quad \omega \in (-\infty, \infty).$$
 (1)

STEP 2: Apply boundary condition:

Denote Boundary condition in Fourier form: $\hat{f}(\omega) = \mathcal{F}(f(x))$. Then,

(1)
$$\implies \hat{u}(\omega, 0) = \hat{f}(\omega) = C(\omega)$$

 $\implies \hat{u}(\omega, y) = \hat{f}(\omega) e^{-|\omega|y}$

12 / 27

$$u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega|x} e^{i\omega x} d\omega$$

$$u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega|x} e^{i\omega x} d\omega$$

Note that $\hat{f}(\omega) = \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau$, and by **Fubini's theorem**

$$u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\tau) \left(\int_{-\infty}^{0} e^{i\omega(x-\tau) + \omega y} d\omega + \int_{0}^{\infty} e^{i\omega(x-\tau) - \omega y} d\omega \right) d\tau$$

$$u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega|x} e^{i\omega x} d\omega$$

Note that $\hat{f}(\omega) = \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau$, and by **Fubini's theorem**

$$u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\tau) \left(\int_{-\infty}^{0} e^{i\omega(x-\tau)+\omega y} d\omega + \int_{0}^{\infty} e^{i\omega(x-\tau)-\omega y} d\omega \right) d\tau$$
$$= \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^{2}+(x-\tau)^{2}} d\tau \quad (y > 0).$$

$$u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-|\omega|x} e^{i\omega x} d\omega$$

Note that $\hat{f}(\omega) = \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau$, and by **Fubini's theorem**

$$\begin{split} u(x,y) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\tau) \bigg(\int_{-\infty}^{0} e^{i\omega(x-\tau)+\omega y} \, \mathrm{d}\omega \\ &+ \int_{0}^{\infty} e^{i\omega(x-\tau)-\omega y} \, \mathrm{d}\omega \bigg) \, \mathrm{d}\tau \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^2 + (x-\tau)^2} \, \mathrm{d}\tau \quad (y > 0). \end{split}$$

Remark

The Green's function on the upper half-plane is

$$K(x) = \frac{y}{\pi (y^2 + x^2)}.$$

Where are we

Motivation

Application of Laplace's equations Goals

Laplace's equation

Introduction

Laplace's equations: main techniques on simple domains Examples

Conformal mapping

Invariance of Laplace's equation

Introduction

Möbius transform

Example

Schwarz-Christoffel transformation

Example

Conformal mapping: invariance of Laplace's equations Let's explore the property of an analytic map before introducing conformal map.

Theorem

Solutions of Laplace's equation on different domains are

"preserved" under analytic map.

We shall prove it by the chain rule.

15 / 27

proof

Let $f: w(u, v) \rightarrow z(x, y)$ be analytic on domain D and $\Phi(x, y)$ be the harmonic function on D. Then Cauchy-Riemann equations are satisfied as follows:

$$\frac{\partial x}{\partial u} = \frac{\partial y}{\partial v}$$
(2)
$$\frac{\partial x}{\partial v} = -\frac{\partial y}{\partial u}$$
(3)

proof

Let $f: w(u, v) \rightarrow z(x, y)$ be analytic on domain D and $\Phi(x, y)$ be the harmonic function on D. Then Cauchy-Riemann equations are satisfied as follows:

$$\frac{\partial x}{\partial u} = \frac{\partial y}{\partial v}$$
(2)
$$\frac{\partial x}{\partial v} = -\frac{\partial y}{\partial u}$$
(3)

Applying the chain rule on ψ_{uu} yields

$$\Phi_{uu} = \frac{\partial}{\partial u} \left(\Phi_x \frac{\partial x}{\partial u} + \Phi_y \frac{\partial y}{\partial u} \right)$$

proof

Let $f: w(u, v) \rightarrow z(x, y)$ be analytic on domain D and $\Phi(x, y)$ be the harmonic function on D. Then Cauchy-Riemann equations are satisfied as follows:

$$\frac{\partial x}{\partial u} = \frac{\partial y}{\partial v}$$
(2)
$$\frac{\partial x}{\partial v} = -\frac{\partial y}{\partial u}$$
(3)

Applying the chain rule on ψ_{uu} yields

$$\Phi_{uu} = \frac{\partial}{\partial u} \left(\Phi_x \frac{\partial x}{\partial u} + \Phi_y \frac{\partial y}{\partial u} \right)$$

= $\Phi_{xx} \left(\frac{\partial x}{\partial u} \right)^2 + \Phi_{yy} \left(\frac{\partial y}{\partial u} \right)^2$
+ $2 \Phi_{xy} \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \right) + \Phi_x \frac{\partial^2 x}{\partial u^2} + \Phi_y \frac{\partial^2 y}{\partial u^2},$

16 / 27

similarly,

$$\begin{split} \Phi_{vv} &= \Phi_{xx} \left(\frac{\partial x}{\partial v} \right)^2 + \Phi_{yy} \left(\frac{\partial y}{\partial v} \right) \\ &+ 2 \Phi_{xy} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \right) + \Phi_x \frac{\partial^2 x}{\partial v^2} + \Phi_y \frac{\partial^2 y}{\partial v^2}. \end{split}$$

similarly,

$$\begin{split} \Phi_{vv} &= \Phi_{xx} \left(\frac{\partial x}{\partial v} \right)^2 + \Phi_{yy} \left(\frac{\partial y}{\partial v} \right) \\ &+ 2 \Phi_{xy} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \right) + \Phi_x \frac{\partial^2 x}{\partial v^2} + \Phi_y \frac{\partial^2 y}{\partial v^2}. \end{split}$$

Combining equations 2 and 3, we have

$$\begin{split} \Phi_{uu} + \Phi_{vv} &= \Phi_{xx} \left[\left(\frac{\partial x}{\partial u} \right)^2 + \left(\frac{\partial x}{\partial v} \right)^2 \right] + \Phi_{yy} \left[\left(\frac{\partial y}{\partial u} \right)^2 \\ &+ \left(\frac{\partial y}{\partial v} \right)^2 \right] + 2 \Phi_{xy} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v} + \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \right) \\ &+ \Phi_x \left(\frac{\partial^2 x}{\partial u^2} + \frac{\partial^2 x}{\partial v^2} \right) + \Phi_y \left(\frac{\partial^2 y}{\partial u^2} + \frac{\partial^2 y}{\partial v^2} \right) \end{split}$$

17 / 27

υγвс

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

similarly,

$$\begin{split} \Phi_{vv} &= \Phi_{xx} \left(\frac{\partial x}{\partial v} \right)^2 + \Phi_{yy} \left(\frac{\partial y}{\partial v} \right) \\ &+ 2 \Phi_{xy} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \right) + \Phi_x \frac{\partial^2 x}{\partial v^2} + \Phi_y \frac{\partial^2 y}{\partial v^2}. \end{split}$$

Combining equations 2 and 3, we have

$$\Phi_{uu} + \Phi_{vv} = \Phi_{xx} \left[\left(\frac{\partial x}{\partial u} \right)^2 + \left(\frac{\partial x}{\partial v} \right)^2 \right] + \Phi_{yy} \left[\left(\frac{\partial y}{\partial u} \right)^2 + \left(\frac{\partial y}{\partial v} \right)^2 \right] + 2 \Phi_{xy} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial v} + \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \right) + \Phi_x \left(\frac{\partial^2 x}{\partial u^2} + \frac{\partial^2 x}{\partial v^2} \right) + \Phi_y \left(\frac{\partial^2 y}{\partial u^2} + \frac{\partial^2 y}{\partial v^2} \right) = |\nabla x(u, v)|^2 \ (\Phi_{xx} + \Phi_{yy}) = 0.$$

17 / 27

Conformal mapping: introduction

Definition

A function f on \mathbb{C} is conformal if it preserves angles locally.

¹Daniel R. Strebe, 15 December 2011

Conformal mapping: introduction

Definition

A function f on \mathbb{C} is conformal if it preserves angles locally.

Theorem

An analytic function f is conformal at z_0 if its derivative $f'(z_0) \neq 0$.

Conformal mapping: introduction

Definition

A function f on \mathbb{C} is conformal if it preserves angles locally.

Theorem

An analytic function f is conformal at z_0 if its derivative $f'(z_0) \neq 0$.

Figure: Mercator projection¹

We will introduce two mappings: Möbius transformation and Schwarz-Christoffel transformation.

¹Daniel R. Strebe, 15 December 2011

Conformal mapping: Möbius transform

Definition

Möbius transform is a complex-valued function in form of

$$w = f(z) = \frac{az+b}{cz+d}$$

where a, b, c and d are complex constants with $ad \neq bc$.

Conformal mapping: Möbius transform

Definition

Möbius transform is a complex-valued function in form of

$$w = f(z) = \frac{az+b}{cz+d}$$

(a)

19/27

where a, b, c and d are complex constants with $ad \neq bc$.

Conformal mapping: Möbius transform

Definition

Möbius transform is a complex-valued function in form of

$$w = f(z) = \frac{az+b}{cz+d}$$

where a, b, c and d are complex constants with $ad \neq bc$.

Example: upper half-plane to disk

Mapping function: $w(u, v) = \rho \frac{i-z}{i+z} \leftrightarrow z(x, y) = \frac{i\rho - iw}{w+\rho}$

Example: upper half-plane to disk

Mapping function: $w(u, v) = \rho \frac{i-z}{i+z} \leftrightarrow z(x, y) = \frac{i\rho - iw}{w+\rho}$

$$\implies \begin{cases} x = \frac{2\rho r \sin \theta}{\rho^2 + r^2 + 2\rho r \cos \theta} \\ y = \frac{\rho^2 - r^2}{\rho^2 + r^2 + 2\rho r \cos \theta} \end{cases}$$

иувс

20 / 27

<ロ> <同> <同> < 回> < 回>

Recall the formula of solution on upper half-plane:

$$\Phi(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^2 + (x-\tau)^2} \,\mathrm{d}\tau$$

Recall the formula of solution on upper half-plane:

$$\Phi(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^2 + (x-\tau)^2} \,\mathrm{d}\tau$$

Thus, replacing x, y with r and θ gives us

$$\Phi(r,\theta) = \frac{1}{\pi} \int_{\tau(-\infty)}^{\tau(\infty)} f(\phi(\tau)) \frac{y(r,\theta)}{y^2(r,\theta) + (x(r,\theta) - \tau(\phi))^2} \,\mathrm{d}(\tau(\phi))$$

Recall the formula of solution on upper half-plane:

$$\Phi(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \frac{y}{y^2 + (x-\tau)^2} \,\mathrm{d}\tau$$

Thus, replacing x, y with r and θ gives us

$$\Phi(r,\theta) = \frac{1}{\pi} \int_{\tau(-\infty)}^{\tau(\infty)} f(\phi(\tau)) \frac{y(r,\theta)}{y^2(r,\theta) + (x(r,\theta) - \tau(\phi))^2} d(\tau(\phi))$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\phi) \frac{\rho^2 - r^2}{\rho^2 + r^2 - 2\rho r \cos(\theta - \phi)} d\phi,$$

where $\tau(\phi)$ is derived from $x(\rho, \theta)$ and $f(\phi)$ is the boundary condition at $r = \rho$ on the disk.

Conformal mapping: Schwarz-Christoffel transformation

SC Mapping Theorem²

A one-to-one conformal function that maps the upper-half plane onto the polygon is

$$f(z) = A \int_0^z (\zeta - x_1)^{\frac{\theta_1}{\pi}} (\zeta - x_2)^{\frac{\theta_2}{\pi}} ... (\zeta - x_{n-1})^{\frac{\theta_{n-1}}{\pi}} d\zeta + B.$$

²Edward B Saff/Arthur David Snider: Fundamentals of complex analysis for mathematics, science, and engineering, 1976.

Conformal mapping: Schwarz-Christoffel transformation

SC Mapping Theorem²

A one-to-one conformal function that maps the upper-half plane onto the polygon is

$$f(z) = A \int_0^z (\zeta - x_1)^{\frac{\theta_1}{\pi}} (\zeta - x_2)^{\frac{\theta_2}{\pi}} ... (\zeta - x_{n-1})^{\frac{\theta_{n-1}}{\pi}} d\zeta + B.$$

²Saff/Snider: Fundamentals of complex analysis for mathematics, science, and engineering (see n. 2) = 👘 🍨 🦿

Example: flow over a corner

Figure: From upper half-plane to the plane excluding the third quadrant

STEP 1: Find the **mapping function** By SC mapping formula, we have

$$w = -i z^{\frac{3}{2}} = -i |z|^{\frac{3}{2}} e^{i \frac{3}{2}(\operatorname{Arg} z)} \leftrightarrow$$

Example: flow over a corner

Figure: From upper half-plane to the plane excluding the third quadrant

STEP 1: Find the **mapping function** By SC mapping formula, we have

$$w = -i z^{\frac{3}{2}} = -i |z|^{\frac{3}{2}} e^{i \frac{3}{2} (\operatorname{Arg} z)} \leftrightarrow z = |w|^{\frac{2}{3}} e^{i \frac{3}{2} (\operatorname{Arg} w + \frac{\pi}{2})}$$

UNBC ・ロ ・ ・ (日) ・ (王) ・ (王) 、 (王) ・ (T) \cdot (

Example: flow over a corner

Figure: From upper half-plane to the plane excluding the third quadrant

STEP 1: Find the **mapping function** By SC mapping formula, we have

$$w = -i z^{\frac{3}{2}} = -i |z|^{\frac{3}{2}} e^{i \frac{3}{2} (\operatorname{Arg} z)} \leftrightarrow z = |w|^{\frac{2}{3}} e^{i \frac{2}{3} (\operatorname{Arg} w + \frac{\pi}{2})}$$

$$\implies \begin{cases} x = (u^{2} + v^{2})^{\frac{1}{3}} \cos(\frac{2}{3} \operatorname{Arg} w + \frac{\pi}{3}) \\ y = (u^{2} + v^{2})^{\frac{1}{3}} \sin(\frac{2}{3} \operatorname{Arg} w + \frac{\pi}{3}) \end{cases}$$

Recall the formula of solution to the upper half-plane:

$$\Phi(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{y^2 + (x-\tau)^2 \,\mathrm{d}\tau}$$

Recall the formula of solution to the upper half-plane:

$$\Phi(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{y^2 + (x-\tau)^2 \,\mathrm{d}\tau}$$

Replacing x, y with u and v:

$$\Phi(u,v) = \frac{2y}{3\pi} \int_{-\infty}^{0} \left(\frac{(-t)^{\frac{1}{3}} f_1(t)}{y^2 + (x + (-t)^{\frac{2}{3}})^2} + \int_{-\infty}^{0} \frac{(-t)^{\frac{1}{3}} f_2(t)}{y^2 + (x - (-t)^{\frac{2}{3}})^2} \right) dt$$

Recall the formula of solution to the upper half-plane:

$$\Phi(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{y^2 + (x-\tau)^2 \,\mathrm{d}\tau}$$

Replacing x, y with u and v:

$$\Phi(u,v) = \frac{2y}{3\pi} \int_{-\infty}^{0} \left(\frac{(-t)^{\frac{1}{3}} f_{1}(t)}{y^{2} + (x + (-t)^{\frac{2}{3}})^{2}} + \int_{-\infty}^{0} \frac{(-t)^{\frac{1}{3}} f_{2}(t)}{y^{2} + (x - (-t)^{\frac{2}{3}})^{2}} \right) dt$$
where $x(u,v) = \left((u^{2} + v^{2})^{\frac{1}{3}} \cos\left(\frac{2}{3}\operatorname{Arg} w + \frac{\pi}{3}\right) \right)^{2}$,
 $y(u,v) = \left((u^{2} + v^{2})^{\frac{1}{3}} \sin\left(\frac{2}{3}\operatorname{Arg} w + \frac{\pi}{3}\right) + (-t)^{\frac{2}{3}} \right)^{2}$ and
 $t = \begin{cases} -(-\tau)^{\frac{3}{2}} & \tau < 0 \\ -\tau^{\frac{3}{2}} & \tau > 0 \end{cases}$.

UNBC ・ロ・・(雪)・(主)・(主)、主 つへ(~ 24/27

What we have learned or reviewed:

application of Laplace's equation

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques
- introduction to conformal mapping

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques
- introduction to conformal mapping

What I have realized:

conformal mapping can solve some complicated domains

What we have learned or reviewed:

- application of Laplace's equation
- solving Laplace's equations by two main techniques
- introduction to conformal mapping

- conformal mapping can solve some complicated domains
- SC map is difficult to apply, considering the complicated integration and inverse map

Thanks for your attendance.

Thanks for your attendance. Any questions welcome!

Thanks for your attendance. Any questions welcome! Short questions? Ask me now!

Thanks for your attendance. Any questions welcome! Short questions? Ask me now! Long questions? Ask me in person.

Thanks for your attendance. Any questions welcome! Short questions? Ask me now! Long questions? Ask me in person.

One of my favorite quotes

"The one who knows all the answers has not been asked all the questions."

< ロ > < 同 > < 回 > < 回 >

26 / 27

Confucius

References

- Lan, Weixian: Conformal mapping and its application in Laplace's equation, in: 2019.
- Saff, Edward B and Arthur David Snider: Fundamentals of complex analysis for mathematics, science, and engineering, 1976.

