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Motivations
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x(t) = £(t, y(t)).

Many models in science/engineering are described by dynamical systems:
» Physics: Newton's equations

x(t) =v(t)
v(t) =

» Disease modelling: SIR model
S(t) _ _BI(t)S(t)

i) =200 )
R(t) = —1(2)

» Machine learning: Optimization via gradient descent

x(t) = =Vf(x(t))
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Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions).
Instead, two approaches are used:

Weixian Lan (UNBC) Motivations 5/38



Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions).
Instead, two approaches are used:
Numerical approach:

» For example, Euler's method, Runge-Kutta method, etc.

Weixian Lan (UNBC) Motivations 5/38



Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions).
Instead, two approaches are used:
Numerical approach:

» For example, Euler's method, Runge-Kutta method, etc.
Qualitative approach:

» System techniques such as linearization around a fixed point, and
finding level curves of solutions, that is, “conserved quantities”.

Weixian Lan (UNBC) Motivations 5/38



Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions).
Instead, two approaches are used:
Numerical approach:

» For example, Euler's method, Runge-Kutta method, etc.
Qualitative approach:

» System techniques such as linearization around a fixed point, and
finding level curves of solutions, that is, “conserved quantities”.

» For more details on qualitative analysis for dynamical system, see, for
example, Perko’s book [Per13] or Strogatz's book [Str01].

Weixian Lan (UNBC) Motivations 5/38



Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions).
Instead, two approaches are used:
Numerical approach:

» For example, Euler's method, Runge-Kutta method, etc.
Qualitative approach:

» System techniques such as linearization around a fixed point, and
finding level curves of solutions, that is, “conserved quantities”.

» For more details on qualitative analysis for dynamical system, see, for
example, Perko’s book [Per13] or Strogatz's book [Str01].

In our research, we focus on the problem of finding conserved quantities for
polynomial dynamical systems.
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Dynamical system
Definition

A continuous dynamical system is an ODE system in RV of the form

x(t) = (¢, x(t))

X(to) = Xo,

(1)

where x(t) = [x1(t),...,xn(t)]" is the unknown vector-valued function,
f(t,x) = [A(t,x),...,fu(t,x)]T is the RHS of the ODE (1), and
tclCR, (to,x) € | xRN,

Some Facts

ODE (1) has a unique solution locally if f is continuous in t and Lipschitz
continuous in x, near (tp, Xo)-

Definition

We say that (1) is a polynomial system if each component f; is a

onnom|a| |n X1yenn ) XN
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Examples of Dynamical Systems

Hamiltonian system
A special class of system called Hamiltonian system in R2V has the form

m - [-Vvyfi(?;,yy))] ) (H.S.)

where H(x,y) : R2NV — R is the Hamiltonian.

2

Example: The energy function H(x,y) = é/— + V/(x) can be expressed as
m

dynamcal system

» Recall from physics this is called a “conservative system”.
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Examples of Dynamical Systems Continued

Quadratic 2D system

A general quadratic 2D system is of the from

x| _ [Ax+ By + Cx? + Dxy + Ey? (Q2D)
y| | Fx+ Gy 4+ Hx? 4 Ixy + Jy? |’
where A, B, ..., J are real constants.
Example: Predator-prey model
x=x(1-y) (PP)
=y(1-x) .

» This is a model for population dynamics between two species.
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Examples of Dynamical Systems Continued

Cubic 2D system
A general cubic 2D system is given by

where A, B, ..., R are constants.

Example: Van der Pol Oscillator

HR

where p > 0 is constant.

» This is a type of nonlinear oscillator.

Weixian Lan (UNBC) Dynamical systems & Conserved Quantities

X Ax + By + Cx® + Dxy + Ey? + Fx3 4 Gx%y + Hxy? + Iy3
y| T |Ux 4+ Ky + Lx® + Mxy + Ny? 4+ Ox® + Px%y + Qxy? + Ry3 |’

(C2D)

(V.D.P.)
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Examples of Dynamical Systems Continued

Quadratic 3D system
A general quadratic 3D system is of the form

Ai1x + Biy + Ciz + Di1x* + E1y? + F1z° 4+ Gixy + Hiyz + hxz

X
y| = | Aox+ Boy + Gz + Dox? 4 Exy? + Foz? + Goxy + Hoyz + hxz
z Asx + B3y + G3z + D3x® + Ezy? + F3z° 4+ Gsxy + Hayz + hxz,
(Q3D)
where A;, ..., [;, i =1,2 3, are constants.

Example: Lorenz system

x oy —x)
y| = |x(p—2)—y|, (L.S.)
z xy — Bz

where o, p, B are constants.
» This is a well-known quadratic 3D example which exhibits “chaotic
behavior” for certain range of parameters.
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Conserved quantities of Dynamical Systems
Definition
A conserved quantity (CQ) of (1) is a scalar function
d
W(t,x): I x RV — R such that E\U(t, x) = 0 whenever x(t) is a solution
of (1).

We say that a conserved quantity is time-independent if W does not
depend on t explicitly, otherwise, it is said to be time-dependent.

Example: Hamiltonian system

For the Hamiltonian system (H.S.), the CQ is the function H(x,y), which
is called the energy function.

> Note that it is time-independent, which means energy is preserved on
solution curves.

d

7Y = VaHX + VyHy = VxHVyH = VyHVH = 0.
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Conserved quantities of Dynamical Systems Continued

Example: Predator-Prey Model
Lotka—Volterra [1920s| discovered a CQ for (P.P.) system

V(x,y)=x—logx+y —logy

. » The solution always stays
on the same level set
determined by their I.C..

> If the level set is
compact, then the
solution exists for all
— I : t € R.

°
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Conserved quantities of Dynamical Systems Continued

Example: Van der Pol Oscillator

Van de Pol oscillator with u =1

e (1-115)

» Van der pol oscillator is a
case of (C2D) without
Y known CQs.

» However, there are “limit
cycles”, as shown left.

» Time-dependent CQ can
imply a limit cycle for a zero
set of f.

Suppose there exists a CQ of the form W(t, x, ) = e*f(x,y) with A > 0.
CQ = eMf(x(t),y(t)) = C = f(x(t),y(t)) = Ce™
= tim f(x(t),y(t)) = 0,ie, zero set of f describes the limit cycle.

Question: Does a time-dependent conserved quantity of this kind exist?
Weixian Lan (UNBC) Dynamical systems & Conserved Quantities 14/38



Conserved quantities of Dynamical Systems Continued

Example: Van der Pol Oscillator

Van de Pol osciltor with 1 — 1
S e R » Van der pol oscillator is a

| \ case of (C2D) without

4 \ known CQs.

) » However, there are “limit

e cycles”, as shown left.

» Time-dependent CQ can
imply a limit cycle for a zero

' set of f.

Suppose there exists a CQ of the form W(t, x, u) = e*f(x,y) with A > 0.
CQ = Mf(x(t).y(t)) = C = f(x(t),y(t)) = Ce
= Iim f(x(t),y(t)) = 0,ie, zero set of f describes the limit cycle.

Questlon Does a time-dependent conserved quantity of this kind eX|st7

Weixian Lan (UN Dynamical systems & Conserved Quantities



Conserved quantities of Dynamical Systems Continued

Example: Van der Pol Oscillator

Van de Pol oscillator with u =1

» Van der pol oscillator is a
case of (C2D) without
known CQs.

> However, there are “limit
cycles”, as shown left.
» Time-dependent CQ can

imply a limit cycle for a zero
set of f.

e (1-115
(1,-0.65)
21 e (1-165)

-2 -1 o 1 2

Suppose there exists a CQ of the form W(t, x, u) = e*f(x,y) with A > 0.
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Conserved quantities of Dynamical Systems Continued

Example: Lorenz system

The Lorenz system with o= 10, 8= 8/3 and p = 28

» The Lorenz system is a
classical example of chaotic
system for certain range of
parameters.

-20  -15  -10 -5 0 5 10 15 20

» So far there are six known conserved quantities [AS81][Kus83].

> However, all of theses conserved quantities exist in non-chaotic regime
of parameters

Weixian Lan (UNBC) Dynamical systems & Conserved Quantities 15/38



cofactor

f(x,y,z) \ parameters

x? — 20z —20 b =20
—px2+%y2+%xy+x2z—%x4 —% [3:0,0:%

y? + 22 -2 B=1p=0
4(1—p)z—l—pxz—l—y2—2xy—|—x2z—%X4 = —4 B=40=1

—px? 4 y? + 22 -2 b6=10=1
il’z(fa_llszﬂyz_(““_Q)x” 40 B=60-2,p=20-1

Question: Do other time-dependent CQ exist in the chaotic regime?
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Talk Overview

Lattice Method and Algorithm
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Darboux First Integral
We will focus on finding conserved quantities for polynomial systems in 2D,
specifically of the form W(t, x,y) = e f(x, y), where f(x, y) is polynomial.
Definition
Darboux first integral V is a CQ of the form
V(t, x) = e f(x),
where f(x) is polynomial.
Examples:
» (Damped harmonic oscillator)[WBN17]
V(x,y) = %ef%t(my2 +yxy + kx?), if y =0 and ¥ = H.

» (Lorenz system) V(x,y,z) = e‘2U(x2 —20z) if B =20.
» We will see more later.
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Lattice Method
For simplicity, we start with the quadratic 2D system (Q2D).

> Assume CQ of the form W(t,x,y) = e *f(x,y), where
f(x,y) = Z;‘inzo Cm,nx™y". So f(x, y) includes polynomial of any

degree.
dwv df
» Then we have 0 = T e‘”(a — Af) by the chain rule.
= fx+fy— A =0
(Q2D) = Z (m 4+ 1)Cmy1.0x™y"(Ax 4 By + Cx* 4 Dxy + Ey?)
m,n=0

o
+ Z (n+1)Cpp1xmy"(Fx + Gy + Hx? + Ixy + Jy?)

m,n=0
o0
A ) Cnax™y" =0

m,n=0
(2)
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I, m > 2 and grouping those that do not. we will have the
following relations:

Q2D-1a: (A—)) Cio +FC1 =0

Q2D-1b: BGi g + (G — k)C071 =0

5
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I/, m > 2 and grouping those that do not. we will have the
following relations:
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I, m > 2 and grouping those that do not. we will have the
following relations:

Q2D-3:
(Am — /()Cm,() + FCm—l,l + C(m — 1)Cm_170 + HCm_g’l =0, m>2

5
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I, m > 2 and grouping those that do not. we will have the
following relations:
Q3D-4:
BClyn_l + (Gn — k)CO,n + ECl,,,_g + J(n — 1)C07,,_1 =0,n>2

5

/
u i

"
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I, m > 2 and grouping those that do not. we will have the
following relations:

Q2D-5:

(A+Gn—k)Cip + F(n+1)Cont1 +2BCop1

+[D + /(n — 1)]C1’,,,1 + InCoJ, + 2EC2’,,,2 =0,n>2

0 1 2 3 e
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I, m > 2 and grouping those that do not. we will have the
following relations:
Q2D-6:
(Am+ G — k)Cpny +2FCp12 + B(m+1)Cry1o + [C(m—1) +
I]Cmfl,l ZHCm,Q,Q + DmCm7o =0, m>2

5
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Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of
x'y™ for some I, m > 2 and grouping those that do not. we will have the
following relations:
Q2D-7: (Am+ Gn— k)Cmp + F(n+1)Cr1.n+1 + B(m+1)Cry1,n-1
+[C(m — 1) + /n] Cm—l,n + H(n + 1)Cm—2,n+1
+[ODm+J(n—1)|Cpp-1 + E(M+1)Cry1p—2 =0, myn>2.

s ’
P A——
«
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Lattice Method: Matrix form for Q2D

Let M denote the sum of powers of x and y.
M=1: [A—k F Cio| [0
5| B G—k||Ga] o)

[2A — k F 0 Coo ~C —H] (¢
M=2:| 2B G+A—k 2F Gai|l=|-D -1 {170]

| O B 2G — k| [Gope gy [Con
[3A — k F 0 0 G
M3 | 3B G+2A—k 2F 0 Gal| _
"] o 2B 26+A—k  3F G
| 0 0 B 3G — k| | Gos
-2C  —H 0

—2E —(D+J) -2/ ?’1
—E 0 —2J| L¥0?

2D (C+1) —2H [C”]
M: (PM — k/)VM = QMVMfly where

Weixian Lan (UNBC) Lattice Method and Algorithm
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Lattice Method: Matrix form for Q2D

] T
Define vy = [CMp Cv-11 - Gum- CO,M} , Pm =
MA F 0 0
MB (M—1)A+6G 2F 0 0
0 (M—1)B  (M-2A+2G6 3F 0 e 0
. Y
0 . 0 3B 24+ (M —2)G (M —1)F 0
; 0 0 28 At (M-1G M
0 0 0 0 B Me
and Qu =
I H 0 0
D (M —2)C+1 2H 0 . 0

(M—1)E (M—2D+J (M—3)C+2l 3H

coco -
o
o

0 3 2D+ (M -=3)J C+M-=2)1 (M—-1)H
2E D+(M-2)J (M-1)l
0 0 0 E (M —1)J
Weixian Lan (UNBC) Lattice Method and Algorithm
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Lattice Method: Matrix equations for Q2D

We then obtain a sequence of matrix equations for (Q2D):

(Pl — )\/)Vl =0
(P2 — >\/)V2 +@Qivi =0

(Pnfl - >\/)an1 + an2vnf2 =0
(Pn - >\I)Vn + anlvnfl =0
QnVn =0.
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Lattice Method: Matrix form for C2D
s=1 (PL—-\)yy =0

A-Xx J 1[Go] [o

B K-\ |Gi o]

s=2: (PQ—)\/)VQ—i-QlVl:O <~
2A — ) J 0 [Co0 C L]re 0
2B A+K-X 2J Gai|+|D M [Cl"’}: 0

0 B 2K — | |Gz E N L 0

s=3 (Ps=AM)vs+ Qovo + Rivy =0 <~

3A—- A J 0 0 G
3B 2A+ K — )\ 2J 0 G
0 2B A+2K — A 3J G
0 0 B 3K=A| |G

2 L 07 rc F O
L |20 C+M 2L C2’° L6 Pl [Gs] _
2E D+N 2M| | M H Q| |Ga]

I R

0 E on | LCo2

O O O

|

Weixian Lan (UNBC) Lattice Method and Algorithm
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s=n (Pp— A)vp+ Qn_1Vn—1 + Ra—2vh—2 = 0, where

nA J 0
nB (n—1)A+K 2J 0
0 (n—1)A (n—2)A+2K 3J 0
Pn = . . .
0. 2B. A+(n—-1)K nJ
0 B nK
(n—1)C L 0
(n—1)D (n—2)C+M 2L 0
(n—1)E (n—2)D+N (n—3)C+2M 3L 0
0 (n—2)E (n=3)D+2N (n—4)C+3M 4L
0 . 2é D+ (n—2)N (n—1)M
0 E (n—=1)N
[(n—2)F (0] T
(n=2)G (n—=3)F+P 20
(n=2)H (n—=3)G+Q (n—4)F+2P 30
(n—=2) (n—=3)H+R (n—4)G+2Q (n—5)F+3P 40
and R, = : : :
0 (n—2)O
0 (n—2)P
0 (n—2)Q
0

I (n-— ZER
Weixian Lan (UNBC 5/3

Lattice Method and Algorithm



Lattice Method: Matrix equations for C2D

Similar to Q2D, we obtain a sequence of matrix equations (C2D):

(P1— M)vi =0
(Po=A)va+ Quvi =0
(P3 = A)v3+ Qavo + Rivy =0

(Pn - )\I)Vn + Qn—an—l + Rn—2Vn—2 =0
ann + Rn—lvn—l =0
R,v, =0.

» Note that C2D has one more term R, than Q2D.
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Algorithm for Q2D and C2D: Main idea

Since Q2D is a special case of C2D, we only consider C2D.

>
>
4

Our goal is to determine those coefficient vectors v for f.
For a polynomial f, only finite many vi's are nonzero.

Say we are interested in polynomial f with lowest order term v; and
highest order term v,,.

Thus, let us assume that i is the smallest index such that v; # 0 and
n is the smallest index such that v, = 0 for all k > n.

Then it requires (P; — Al)v; =0, ie, A and v; are eigenvalue and
eigenvector of P;. So the staring point is to find the eigenvalues and
corrsponding eigenvectors for P; for given i.

From then on, we sequentially solve

(Px — M)vk + Qx_1vk—1 + Rxk_ovk_2=0for vy, k=i+1,...,n
Lastly, it also requires two terminal conditions Q,v, + R,_1v,—1 =0
and R,v, = 0. If both satsfied, we have determined coefficients of f.

Weixian Lan (UNBC) Lattice Method and Algorithm 27/38



Algorithm for Q2D and C2D: Pseudocode
Pseudocode: Finding C.Q.s for the Cubic 2D case of degree n

1 function £indCQ-C2D(Py,Po, ..., Q1,@>,..., Ri, R, ...)
// P,Q,R are the coefficient matrices.

2 fori=1 to ndo

3 for each eigenvalue A and eigenvector v; do

4 Solve (Piy1 — A)viy1 + Qjvi =0 for vji1

5 for j=i+4+2 to ndo

6 L Solve (P; — AMl)vj + Qj—1vj—1 + Rj—avj_> = 0 for

vj

7 Compute x; = Qpvy + Rp—1vp—1 and xo = R,v,

8 if x; =0 and x» = 0 then

9 L A f is found with coefficients v;, ..., v,.

10 return all such f

As we can see from above, regardless of complexity to find eigenvalues and

eigenvectors, the time complexity is about O(n3).
Weixian Lan (UNBC) Lattice Method and Algorithm 28/38



Talk Overview

Examples
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Hamiltonian System

Consider Hamiltonian system

x = Ax + By + Cx? — 2Jxy + Ey?,
y = Fx — Ay + Hx? — 2Cxy + Jy?.

We let v = 0, and solve the following equations:
(P2 — )\/)Vz =0 <—
[2A—- )\ F 0
2B - 2F w=0=—= VQ:[—F 2A B]Twith)\:o.
| 0 B —2A-\
Psv3 + Qv =0 <

A F 0 0 —2C —H 0]
3B A 2F 0 _ |4 ¢ 2| |,
0 2B —A 3F |7 |2 J acC 5

0 0 B -34 0 -E —2J
— v =[-2H 2¢ —2J 2£]".
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Hamiltonian System continued

3C H 0 0 2y
—-6J 0 2H 0 23C
Qvs=|3E -3J —-3C 3H | = 0.
0 2E 0 —6C 2F
0 0 E 3J 3
Thus, we find v, and v3 with A = 0, which gives
H(x,y) = —Fx?> + 2Axy + By? — %HX?’ +2Cx%y — 2Jxy? + %Eyz.

Weixian Lan (UNBC) Examples 31/38



Non-Hamiltonian System
An non-Hamiltonian example is
X:x+x2+xy+x3+xzy+xy2
Yy =2x42y +2x% + xy + y? — x%y — xy? — y5.
1—-Xx 2
0 2-2X
— vi=[-2 0] with A=1.
(P2 — )\/)Vz + Qivy =0

(PL— M)vy =0 <> [ }vlzo

1 2 0] 1 2 5
<— (0 2 4lwnn=—(11 {0]
0 0 3 01
— w=[0 10"
We also check that
2 20 0 1 0 0
2 2 4 1 -1] [-2 0
Qv+ FRivi= 1, 5, (1) +1] 1 [0}— 0
0 0 2 0 -1 0

Weixian Lan (UNBC) - xamples 32/38



and R2V2 =

O N NN

0

o O O o

0

0 0
0 0 0
=2 |1| =10].
—-2( |0 0
-2 0

Hence, the conserved quantity is given by

Weixian Lan (UNBC)

V(x,y, t)=e {(—2x + xy).

Examples

33/38



Lorenz System

> Similarly, we also derived the lattice equations for the Lorenz system.
We omit the general C3D case due to their complexity.

» We were also able to recover six known CQs for Lorenz system by
solving a sequence of matrix equations.

Weixian Lan (UNBC) Examples 34/38



Drawbacks on the algorithm

However, there are still some potential issues with our algorithm that we
hope to improve on:
» At implementation level, it is hard to solve the problem Ax = b,
where A is a rank deficiency matrix but b is in the range of A, ie, a
solution x does exist.

» Even if we solve the above problem, there are likely many classes of
choices for solution x, and so our algorithm has to search every path
that might lead to a CQ. If later we run into the same scenario at
higher dimension, it would have “domino effect”.

» Qur algorithm does not address complex eigenvalues.
» The time complexity is high for search of high-order polynomial CQ.
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Talk Overview

Conclusion
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Summary
» Introduced the lattice method to find Darboux First Intergals for Q2D
and C2D case.
P> Presented a general algorithm to find all possible Darboux First
Intergals of degree up to n.
» Applied to non-trivial examples, as well as some special systems such
as the Lorenz system.

Future work:
» Generalize to system with arbitrary polynomial order
» Look for other types of C.Q.s
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Thank You!
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