The Lattice Method for Finding Conserved Quantities of Dynamical Systems

Weixian (Kai) Lan

April 2, 2021

Talk Overview

Motivations

Dynamical systems \& Conserved Quantities

Lattice Method and Algorithm

Examples

Conclusion

Talk Overview

Motivations

Dynamical systems \& Conserved Quantities

Lattice Method and Algorithm

Examples

Conclusion

Motivations

Dynamical systems are 1st order systems of ordinary differential equations (ODEs)

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}(t, \boldsymbol{y}(t))
$$

Motivations

Dynamical systems are 1st order systems of ordinary differential equations (ODEs)

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}(t, \boldsymbol{y}(t))
$$

Many models in science/engineering are described by dynamical systems:

Motivations

Dynamical systems are 1st order systems of ordinary differential equations (ODEs)

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}(t, \boldsymbol{y}(t))
$$

Many models in science/engineering are described by dynamical systems:

- Physics: Newton's equations

$$
\begin{aligned}
\dot{x}(t) & =v(t) \\
\dot{v}(t) & =-\frac{F(t)}{m}
\end{aligned}
$$

Motivations

Dynamical systems are 1st order systems of ordinary differential equations (ODEs)

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}(t, \boldsymbol{y}(t))
$$

Many models in science/engineering are described by dynamical systems:

- Physics: Newton's equations

$$
\begin{aligned}
\dot{x}(t) & =v(t) \\
\dot{v}(t) & =-\frac{F(t)}{m}
\end{aligned}
$$

- Disease modelling: SIR model

$$
\begin{aligned}
\dot{S}(t) & =-\frac{\beta I(t) S(t)}{N} \\
\dot{I}(t) & =\frac{\beta I(t) S(t)}{N}-\gamma I(t) \\
\dot{R}(t) & =-\gamma I(t)
\end{aligned}
$$

Motivations

Dynamical systems are 1st order systems of ordinary differential equations (ODEs)

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}(t, \boldsymbol{y}(t))
$$

Many models in science/engineering are described by dynamical systems:

- Physics: Newton's equations

$$
\begin{aligned}
\dot{x}(t) & =v(t) \\
\dot{v}(t) & =-\frac{F(t)}{m}
\end{aligned}
$$

- Disease modelling: SIR model

$$
\begin{aligned}
\dot{S}(t) & =-\frac{\beta I(t) S(t)}{N} \\
\dot{I}(t) & =\frac{\beta I(t) S(t)}{N}-\gamma I(t) \\
\dot{R}(t) & =-\gamma I(t)
\end{aligned}
$$

- Machine learning: Optimization via gradient descent

$$
\dot{\boldsymbol{x}}(t)=-\nabla f(\boldsymbol{x}(t))
$$

Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions). Instead, two approaches are used:

Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions). Instead, two approaches are used:
Numerical approach:

- For example, Euler's method, Runge-Kutta method, etc.

Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions). Instead, two approaches are used:

Numerical approach:

- For example, Euler's method, Runge-Kutta method, etc.

Qualitative approach:

- System techniques such as linearization around a fixed point, and finding level curves of solutions, that is, "conserved quantities".

Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions). Instead, two approaches are used:

Numerical approach:

- For example, Euler's method, Runge-Kutta method, etc.

Qualitative approach:

- System techniques such as linearization around a fixed point, and finding level curves of solutions, that is, "conserved quantities".
- For more details on qualitative analysis for dynamical system, see, for example, Perko's book [Per13] or Strogatz's book [Str01].

Motivation continued

Dynamical systems are difficult to solve in general (no explicit solutions). Instead, two approaches are used:

Numerical approach:

- For example, Euler's method, Runge-Kutta method, etc.

Qualitative approach:

- System techniques such as linearization around a fixed point, and finding level curves of solutions, that is, "conserved quantities".
- For more details on qualitative analysis for dynamical system, see, for example, Perko's book [Per13] or Strogatz's book [Str01].
In our research, we focus on the problem of finding conserved quantities for polynomial dynamical systems.

Talk Overview

Motivations

Dynamical systems \& Conserved Quantities

Lattice Method and Algorithm

Examples

Conclusion

Dynamical system

Definition

A continuous dynamical system is an ODE system in \mathbb{R}^{N} of the form

$$
\begin{align*}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{f}(t, \boldsymbol{x}(t)) \\
\boldsymbol{x}\left(t_{0}\right) & =\boldsymbol{x}_{0} \tag{1}
\end{align*}
$$

where $\boldsymbol{x}(t)=\left[x_{1}(t), \ldots, x_{N}(t)\right]^{T}$ is the unknown vector-valued function, $\boldsymbol{f}(t, \boldsymbol{x})=\left[f_{1}(t, \boldsymbol{x}), \ldots, f_{N}(t, \boldsymbol{x})\right]^{T}$ is the RHS of the ODE (1), and $t \in I \subset \mathbb{R},\left(t_{0}, x_{0}\right) \in I \times \mathbb{R}^{N}$.

Some Facts

ODE (1) has a unique solution locally if \boldsymbol{f} is continuous in t and Lipschitz continuous in \boldsymbol{x}, near $\left(t_{0}, x_{0}\right)$.

Definition

We say that (1) is a polynomial system if each component f_{i} is a $\underset{\text { Weixian Lan (UNBC) }}{\text { poly }} x_{1}, \ldots, x_{N}$.

Examples of Dynamical Systems

Hamiltonian system

A special class of system called Hamiltonian system in $\mathbb{R}^{2 N}$ has the form

$$
\left[\begin{array}{c}
\dot{\boldsymbol{x}} \tag{H.S.}\\
\dot{\boldsymbol{y}}
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\boldsymbol{y}} \mathcal{H}(\boldsymbol{x}, \boldsymbol{y}) \\
-\nabla_{\boldsymbol{x}} \mathcal{H}(\boldsymbol{x}, \boldsymbol{y})
\end{array}\right],
$$

where $\mathcal{H}(\boldsymbol{x}, \boldsymbol{y}): \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is the Hamiltonian.
Example: The energy function $\mathcal{H}(x, y)=\frac{y^{2}}{2 m}+V(x)$ can be expressed as dynamcal system

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
\frac{y}{m} \\
-\frac{\partial V}{\partial x}
\end{array}\right] .
$$

- Recall from physics this is called a "conservative system".

Examples of Dynamical Systems Continued

Quadratic 2D system

A general quadratic 2D system is of the from

$$
\left[\begin{array}{c}
\dot{x} \tag{Q2D}\\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
A x+B y+C x^{2}+D x y+E y^{2} \\
F x+G y+H x^{2}+I x y+J y^{2}
\end{array}\right],
$$

where A, B, \ldots, J are real constants.
Example: Predator-prey model

$$
\begin{align*}
\dot{x} & =x(1-y) \\
\dot{y} & =y(1-x) \tag{P.P.}
\end{align*}
$$

- This is a model for population dynamics between two species.

Examples of Dynamical Systems Continued

Cubic 2D system

A general cubic 2D system is given by

$$
\left[\begin{array}{c}
\dot{x} \tag{C2D}\\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
A x+B y+C x^{2}+D x y+E y^{2}+F x^{3}+G x^{2} y+H x y^{2}+I y^{3} \\
J x+K y+L x^{2}+M x y+N y^{2}+O x^{3}+P x^{2} y+Q x y^{2}+R y^{3}
\end{array}\right],
$$

where A, B, \ldots, R are constants.
Example: Van der Pol Oscillator

$$
\left[\begin{array}{c}
\dot{x} \tag{V.D.P.}\\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
y \\
-x+\mu\left(1-x^{2}\right) y
\end{array}\right],
$$

where $\mu>0$ is constant.

- This is a type of nonlinear oscillator.

Examples of Dynamical Systems Continued

Quadratic 3D system

A general quadratic 3D system is of the form

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{l}
A_{1} x+B_{1} y+C_{1} z+D_{1} x^{2}+E_{1} y^{2}+F_{1} z^{2}+G_{1} x y+H_{1} y z+I_{1} x z \\
A_{2} x+B_{2} y+C_{2} z+D_{2} x^{2}+E_{2} y^{2}+F_{2} z^{2}+G_{2} x y+H_{2} y z+I_{2} x z \\
A_{3} x+B_{3} y+C_{3} z+D_{3} x^{2}+E_{3} y^{2}+F_{3} z^{2}+G_{3} x y+H_{3} y z+I_{3} x z,
\end{array}\right]
$$

where $A_{i}, \ldots, I_{i}, i=1,2,3$, are constants.
Example: Lorenz system

$$
\left[\begin{array}{c}
\dot{x} \tag{L.S.}\\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
\sigma(y-x) \\
x(\rho-z)-y \\
x y-\beta z
\end{array}\right],
$$

where σ, ρ, β are constants.

- This is a well-known quadratic 3D example which exhibits "chaotic behavior" for certain range of parameters.

Conserved quantities of Dynamical Systems

Definition

A conserved quantity (CQ) of (1) is a scalar function
$\Psi(t, \boldsymbol{x}): I \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $\frac{\mathrm{d}}{\mathrm{d} t} \Psi(t, \boldsymbol{x})=0$ whenever $\boldsymbol{x}(t)$ is a solution of (1).
We say that a conserved quantity is time-independent if Ψ does not depend on t explicitly, otherwise, it is said to be time-dependent.

Example: Hamiltonian system

For the Hamiltonian system (H.S.), the CQ is the function $\mathcal{H}(\boldsymbol{x}, \boldsymbol{y})$, which is called the energy function.

- Note that it is time-independent, which means energy is preserved on solution curves.

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \psi=\nabla_{x} H \dot{x}+\nabla_{y} H \dot{y}=\nabla_{x} H \nabla_{y} H-\nabla_{y} H \nabla_{x} H=0 .
$$

Conserved quantities of Dynamical Systems Continued

Example: Predator-Prey Model

Lotka-Volterra [1920s] discovered a CQ for (P.P.) system

$$
\Psi(x, y)=x-\log x+y-\log y
$$

- The solution always stays on the same level set determined by their I.C..
- If the level set is compact, then the solution exists for all $t \in \mathbb{R}$.

Conserved quantities of Dynamical Systems Continued

Example: Van der Pol Oscillator

- Van der pol oscillator is a case of (C2D) without known CQs.
- However, there are "limit cycles", as shown left.
- Time-dependent CQ can imply a limit cycle for a zero set of f.

Suppose there exists a CQ of the form $\Psi(t, x, \mu):=e^{\lambda t} f(x, y)$ with $\lambda>0$. $\mathrm{CQ} \Longrightarrow e^{\lambda t} f(x(t), y(t))=C \Longrightarrow f(x(t), y(t))=C e^{-\lambda t}$
$\Longrightarrow \lim _{t \rightarrow \infty} f(x(t), y(t))=0$, ie, zero set of f describes the limit cycle.
Question: Does a time-dependent conserved quantity of this kind exist?

Conserved quantities of Dynamical Systems Continued

Example: Van der Pol Oscillator

- Van der pol oscillator is a case of (C2D) without known CQs.
- However, there are "limit cycles", as shown left.
- Time-dependent CQ can imply a limit cycle for a zero set of f.

Suppose there exists a CQ of the form $\Psi(t, x, \mu):=e^{\lambda t} f(x, y)$ with $\lambda>0$. $\mathrm{CQ} \Longrightarrow e^{\lambda t} f(x(t), y(t))=C \Longrightarrow f(x(t), y(t))=C e^{-\lambda t}$
$\Longrightarrow \lim _{t \rightarrow \infty} f(x(t), y(t))=0$, ie, zero set of f describes the limit cycle.
Question: Does a time-dependent conserved quantity of this kind exist?

Conserved quantities of Dynamical Systems Continued

Example: Van der Pol Oscillator

Van de Pol oscillator with $\mu=1$

- Van der pol oscillator is a case of (C2D) without known CQs.
- However, there are "limit cycles", as shown left.
- Time-dependent CQ can imply a limit cycle for a zero set of f.

Suppose there exists a CQ of the form $\Psi(t, x, \mu):=e^{\lambda t} f(x, y)$ with $\lambda>0$.
$\mathrm{CQ} \Longrightarrow e^{\lambda t} f(x(t), y(t))=C \Longrightarrow f(x(t), y(t))=C e^{-\lambda t}$
$\Longrightarrow \lim _{t \rightarrow \infty} f(x(t), y(t))=0$, ie, zero set of f describes the limit cycle.
Question: Does a time-dependent conserved quantity of this kind exist?

Conserved quantities of Dynamical Systems Continued

Example: Lorenz system

- The Lorenz system is a classical example of chaotic system for certain range of parameters.
- So far there are six known conserved quantities [AS81][Kus83].
- However, all of theses conserved quantities exist in non-chaotic regime of parameters

$$
f(x, y, z)
$$

cofactor

$$
x^{2}-2 \sigma z \quad-2 \sigma \quad \beta=2 \sigma
$$

$$
-\rho x^{2}+\frac{1}{3} y^{2}+\frac{2}{3} x y+x^{2} z-\frac{3}{4} x^{4}
$$

$$
-\frac{4}{3}
$$

$$
\beta=0, \sigma=\frac{1}{3}
$$

$$
y^{2}+z^{2}
$$

$$
\beta=1, \rho=0
$$

$$
\begin{array}{lll}
4(1-\rho) z+\rho x^{2}+y^{2}-2 x y+x^{2} z-\frac{1}{4} x^{4}= & -4 & \beta=4, \sigma=1 \\
-\rho x^{2}+y^{2}+z^{2} & -2 & \beta=1, \sigma=1
\end{array}
$$

$$
\begin{align*}
& \frac{1}{\sigma}(2 \sigma-1)^{2} x^{2}+\sigma y^{2}-(4 \sigma-2) x y+\quad-4 \sigma \quad \beta=6 \sigma-2, \rho=2 \sigma-1 \\
& x^{2} z-\frac{1}{4 s} x^{4}
\end{align*}
$$

Question: Do other time-dependent CQ exist in the chaotic regime?

Talk Overview

Motivations

Dynamical systems \& Conserved Quantities

Lattice Method and Algorithm

Examples

Conclusion

Darboux First Integral

We will focus on finding conserved quantities for polynomial systems in 2D, specifically of the form $\Psi(t, x, y)=e^{\lambda t} f(x, y)$, where $f(x, y)$ is polynomial.

Definition

Darboux first integral Ψ is a CQ of the form

$$
\Psi(t, \boldsymbol{x})=e^{\lambda t} f(\boldsymbol{x})
$$

where $f(\boldsymbol{x})$ is polynomial.

Examples:

- (Damped harmonic oscillator)[WBN17]

$$
\Psi(x, y)=\frac{1}{2} e^{-\frac{\gamma t}{m}}\left(m y^{2}+\gamma x y+k x^{2}\right), \text { if } \gamma=0 \text { and } \Psi=H .
$$

- (Lorenz system) $\Psi(x, y, z)=e^{-2 \sigma}\left(x^{2}-2 \sigma z\right)$ if $\beta=2 \sigma$.
- We will see more later.

Lattice Method

For simplicity, we start with the quadratic 2D system (Q2D).

- Assume CQ of the form $\Psi(t, x, y)=e^{-\lambda} f(x, y)$, where $f(x, y)=\sum_{m, n=0}^{\infty} C_{m, n} x^{m} y^{n}$. So $f(x, y)$ includes polynomial of any degree.
- Then we have $0=\frac{\mathrm{d} \Psi}{\mathrm{d} t}=e^{-\lambda t}\left(\frac{\mathrm{~d} f}{\mathrm{~d} t}-\lambda f\right)$ by the chain rule.

$$
\Longrightarrow f_{x} \dot{x}+f_{y} \dot{y}-\lambda f=0
$$

$(\mathrm{Q} 2 \mathrm{D}) \Longrightarrow \sum_{m, n=0}^{\infty}(m+1) C_{m+1, n} x^{m} y^{n}\left(A x+B y+C x^{2}+D x y+E y^{2}\right)$

$$
+\sum_{m, n=0}^{\infty}(n+1) C_{m, n+1} x^{m} y^{n}\left(F x+G y+H x^{2}+I x y+J y^{2}\right)
$$

$$
\begin{equation*}
-\lambda \sum_{m, n=0}^{\infty} C_{m, n} x^{m} y^{n}=0 \tag{2}
\end{equation*}
$$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{\prime} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:

$$
\begin{aligned}
& \text { Q2D-1a: }(A-\lambda) C_{1,0}+F C_{0,1}=0 \\
& \text { Q2D-1b: } B C_{1,0}+(G-k) C_{0,1}=0
\end{aligned}
$$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{\prime} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:

$$
\text { Q2D-2: } 2 B C_{2,0}+(G+A-k) C_{1,1}+D C_{1,0}+I C_{0,1}+2 F C_{0,2}=0
$$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{l} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:

> Q2D-3:
$(A m-k) C_{m, 0}+F C_{m-1,1}+C(m-1) C_{m-1,0}+H C_{m-2,1}=0, m \geq 2$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{\prime} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:

$$
\begin{gathered}
\text { Q3D-4: } \\
B C_{1, n-1}+(G n-k) C_{0, n}+E C_{1, n-2}+J(n-1) C_{0, n-1}=0, n \geq 2
\end{gathered}
$$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{l} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:
Q2D-5:

$$
\begin{gathered}
(A+G n-k) C_{1, n}+F(n+1) C_{0, n+1}+2 B C_{2, n-1} \\
+[D+I(n-1)] C_{1, n-1}+I n C_{0, n}+2 E C_{2, n-2}=0, n \geq 2
\end{gathered}
$$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{l} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:

Q2D-6:

$$
\begin{gathered}
(A m+G-k) C_{m, 1}+2 F C_{m-1,2}+B(m+1) C_{m+1,0}+[C(m-1)+ \\
I] C_{m-1,1} 2 H C_{m-2,2}+D m C_{m, 0}=0, m \geq 2
\end{gathered}
$$

Lattice Method

In the next step, we simplify (2) by separating terms that have a factor of $x^{l} y^{m}$ for some $I, m \geq 2$ and grouping those that do not. we will have the following relations:

$$
\text { Q2D-7: } \begin{aligned}
& (A m+G n-k) C_{m, n}+F(n+1) C_{m-1, n+1}+B(m+1) C_{m+1, n-1} \\
& +[C(m-1)+I n] C_{m-1, n}+H(n+1) C_{m-2, n+1} \\
+ & {[D m+J(n-1)] C_{m, n-1}+E(m+1) C_{m+1, n-2}=0, m, n \geq 2 . }
\end{aligned}
$$

Lattice Method: Matrix form for Q2D

Let M denote the sum of powers of x and y.

$M:\left(P_{M}-k l\right) \boldsymbol{v}_{M}=Q_{M} \boldsymbol{v}_{M-1}$, where

Lattice Method: Matrix form for Q2D

Define $\boldsymbol{v}_{M}=\left[\begin{array}{lllll}C_{M, 0} & C_{M-1,1} & \ldots & C_{1, M-1} & C_{0, M}\end{array}\right]^{T}, P_{M}=$

$$
\left[\begin{array}{ccccccc}
M A & F & 0 & \ldots & 0 & & \\
M B & (M-1) A+G & 2 F & 0 & \ldots & \cdots & 0 \\
0 & (M-1) B & (M-2) A+2 G & 3 F & 0 & & \\
\ddots & \ddots & \ddots & & & & \\
0 & \cdots & 0 & 3 B & 2 A+(M-2) G & (M-1) F & 0 \\
0 & \cdots & 0 & 0 & 2 B & A+(M-1) G & M F \\
0 & \cdots & 0 & 0 & 0 & B & M G
\end{array}\right],
$$

and $Q_{M}=$

$$
\left[\begin{array}{ccccccc}
C & H & 0 & \ldots & 0 & & \\
D & (M-2) C+I & 2 H & 0 & \cdots & & \\
(M-1) E & (M-2) D+J & (M-3) C+2 I & 3 H & & & \\
\ddots & \ddots & & & & & \\
0 & \cdots & 0 & 3 E & 2 D+(M-3) J & C+(M-2) I & (M-1) H \\
0 & \cdots & 0 & 0 & 2 E & D+(M-2) J & (M-1) I \\
0 & \cdots & 0 & 0 & 0 & E & (M-1) J
\end{array}\right]
$$

Lattice Method: Matrix equations for Q2D

We then obtain a sequence of matrix equations for (Q2D):

$$
\begin{aligned}
\left(P_{1}-\lambda I\right) \boldsymbol{v}_{1} & =0 \\
\left(P_{2}-\lambda I\right) \boldsymbol{v}_{2}+Q_{1} \boldsymbol{v}_{1} & =0
\end{aligned}
$$

$$
\left(P_{n-1}-\lambda I\right) \boldsymbol{v}_{n-1}+Q_{n-2} \boldsymbol{v}_{n-2}=0
$$

$$
\left(P_{n}-\lambda I\right) \boldsymbol{v}_{n}+Q_{n-1} \boldsymbol{v}_{n-1}=0
$$

$$
Q_{n} \boldsymbol{v}_{n}=0
$$

Lattice Method: Matrix form for C2D

$s=1:\left(P_{1}-\lambda /\right) \mathbf{v}_{1}=0 \Longleftrightarrow$

$$
\left[\begin{array}{cc}
A-\lambda & J \\
B & K-\lambda
\end{array}\right]\left[\begin{array}{l}
C_{1,0} \\
C_{0,1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
s=2:\left(P_{2}-\lambda l\right) \boldsymbol{v}_{2}+Q_{1} \boldsymbol{v}_{1}=0
$$

$$
\left[\begin{array}{ccc}
2 A-\lambda & J & 0 \\
2 B & A+K-\lambda & 2 J \\
0 & B & 2 K-\lambda
\end{array}\right]\left[\begin{array}{l}
C_{2,0} \\
C_{1,1} \\
C_{0,2}
\end{array}\right]+\left[\begin{array}{cc}
C & L \\
D & M \\
E & N
\end{array}\right]\left[\begin{array}{l}
C_{1,0} \\
C_{0,1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
s=3:\left(P_{3}-\lambda I\right) \boldsymbol{v}_{3}+Q_{2} \boldsymbol{v}_{2}+R_{1} \boldsymbol{v}_{1}=0
$$

$$
\left[\begin{array}{cccc}
3 A-\lambda & J & 0 & 0 \\
3 B & 2 A+K-\lambda & 2 J & 0 \\
0 & 2 B & A+2 K-\lambda & 3 J \\
0 & 0 & B & 3 K-\lambda
\end{array}\right]\left[\begin{array}{l}
C_{3,0} \\
C_{2,1} \\
C_{1,2} \\
C_{0,3}
\end{array}\right]
$$

$$
+\left[\begin{array}{ccc}
2 C & L & 0 \\
2 D & C+M & 2 L \\
2 E & D+N & 2 M \\
0 & E & 2 N
\end{array}\right]\left[\begin{array}{l}
C_{2,0} \\
C_{1,1} \\
C_{0,2}
\end{array}\right]+\left[\begin{array}{cc}
F & O \\
G & P \\
H & Q \\
I & R
\end{array}\right]\left[\begin{array}{l}
C_{1,0} \\
C_{0,1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Lattice Method: Matrix equations for C2D

Similar to Q2D, we obtain a sequence of matrix equations (C2D):

$$
\begin{aligned}
\left(P_{1}-\lambda I\right) \boldsymbol{v}_{1} & =0 \\
\left(P_{2}-\lambda I\right) \boldsymbol{v}_{2}+Q_{1} \boldsymbol{v}_{1} & =0 \\
\left(P_{3}-\lambda I\right) \mathbf{v}_{3}+Q_{2} \boldsymbol{v}_{2}+R_{1} \mathbf{v}_{1} & =0 \\
\vdots & \\
\left(P_{n}-\lambda I\right) \boldsymbol{v}_{n}+Q_{n-1} \boldsymbol{v}_{n-1}+R_{n-2} \boldsymbol{v}_{n-2} & =0 \\
Q_{n} \boldsymbol{v}_{n}+R_{n-1} \boldsymbol{v}_{n-1} & =0 \\
R_{n} v_{n} & =0 .
\end{aligned}
$$

- Note that C2D has one more term R_{n} than Q2D.

Algorithm for Q2D and C2D: Main idea

Since Q2D is a special case of C2D, we only consider C2D.

- Our goal is to determine those coefficient vectors \boldsymbol{v}_{k} for f.
- For a polynomial f, only finite many \boldsymbol{v}_{k} 's are nonzero.
- Say we are interested in polynomial f with lowest order term \boldsymbol{v}_{i} and highest order term \boldsymbol{v}_{n}.
- Thus, let us assume that i is the smallest index such that $\boldsymbol{v}_{i} \neq 0$ and n is the smallest index such that $\boldsymbol{v}_{k}=0$ for all $k>n$.
- Then it requires $\left(P_{i}-\lambda I\right) \boldsymbol{v}_{i}=0$, ie, λ and \boldsymbol{v}_{i} are eigenvalue and eigenvector of P_{i}. So the staring point is to find the eigenvalues and corrsponding eigenvectors for P_{i} for given i.
- From then on, we sequentially solve $\left(P_{k}-\lambda I\right) \boldsymbol{v}_{k}+Q_{k-1} \boldsymbol{v}_{k-1}+R_{k-2} \boldsymbol{v}_{k-2}=0$ for $\boldsymbol{v}_{k}, k=i+1, \ldots, n$.
- Lastly, it also requires two terminal conditions $Q_{n} \boldsymbol{v}_{n}+R_{n-1} \boldsymbol{v}_{n-1}=0$ and $R_{n} \boldsymbol{v}_{n}=0$. If both satsfied, we have determined coefficients of f.

Algorithm for Q2D and C2D: Pseudocode

Pseudocode: Finding C.Q.s for the Cubic 2D case of degree n
1 function findCQ-C2D $\left(P_{1}, P_{2}, \ldots, Q_{1}, Q_{2}, \ldots, R_{1}, R_{2}, \ldots\right)$

As we can see from above, regardless of complexity to find eigenvalues and eigenvectors, the time complexity is about $\mathcal{O}\left(n^{3}\right)$.

Talk Overview

Motivations

Dynamical systems \& Conserved Quantities

Lattice Method and Algorithm

Examples

Conclusion

Hamiltonian System

Consider Hamiltonian system

$$
\begin{aligned}
& \dot{x}=A x+B y+C x^{2}-2 J x y+E y^{2} \\
& \dot{y}=F x-A y+H x^{2}-2 C x y+J y^{2} .
\end{aligned}
$$

We let $\boldsymbol{v}_{1}=0$, and solve the following equations:

$$
\begin{aligned}
& \left(P_{2}-\lambda I\right) \boldsymbol{v}_{2}=0 \Longleftrightarrow \\
& {\left[\begin{array}{ccc}
2 A-\lambda & F & 0 \\
2 B & -\lambda & 2 F \\
0 & B & -2 A-\lambda
\end{array}\right] \boldsymbol{v}_{2}=0 \Longrightarrow \boldsymbol{v}_{2}=\left[\begin{array}{lll}
-F & 2 A & B
\end{array}\right]^{T} \text { with } \lambda=0 \text {. }} \\
& P_{3} \boldsymbol{v}_{3}+Q_{2} \boldsymbol{v}_{2}=0 \\
& {\left[\begin{array}{cccc}
3 A & F & 0 & 0 \\
3 B & A & 2 F & 0 \\
0 & 2 B & -A & 3 F \\
0 & 0 & B & -3 A
\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{ccc}
-2 C & -H & 0 \\
4 J & C & -2 H \\
-2 E & J & 4 C \\
0 & -E & -2 J
\end{array}\right]\left[\begin{array}{c}
-F \\
2 A \\
B
\end{array}\right]} \\
& \Longrightarrow \mathbf{v}_{3}=\left[\begin{array}{llll}
-\frac{2}{3} H & 2 C & -2 J & \frac{2}{3} E
\end{array}\right]^{T} .
\end{aligned}
$$

Hamiltonian System continued

$Q_{3} \boldsymbol{v}_{3}=\left[\begin{array}{cccc}3 C & H & 0 & 0 \\ -6 J & 0 & 2 H & 0 \\ 3 E & -3 J & -3 C & 3 H \\ 0 & 2 E & 0 & -6 C \\ 0 & 0 & E & 3 J\end{array}\right]\left[\begin{array}{c}-\frac{2}{3} H \\ 2 C \\ -2 J \\ \frac{2}{3} E\end{array}\right]=0$.
Thus, we find \boldsymbol{v}_{2} and \boldsymbol{v}_{3} with $\lambda=0$, which gives $\mathcal{H}(x, y)=-F x^{2}+2 A x y+B y^{2}-\frac{2}{3} H x^{3}+2 C x^{2} y-2 J x y^{2}+\frac{2}{3} E y^{2}$.

Non-Hamiltonian System

An non-Hamiltonian example is

$$
\begin{gathered}
\dot{x}=x+x^{2}+x y+x^{3}+x^{2} y+x y^{2} \\
\dot{y}=2 x+2 y+2 x^{2}+x y+y^{2}-x^{2} y-x y^{2}-y^{3} . \\
\left(P_{1}-\lambda /\right) \boldsymbol{v}_{1}=0 \Longleftrightarrow\left[\begin{array}{cc}
1-\lambda & 2 \\
0 & 2-\lambda
\end{array}\right] \boldsymbol{v}_{1}=0 \\
\Longrightarrow \boldsymbol{v}_{1}=\left[\begin{array}{ll}
-2 & 0
\end{array}\right]^{T} \text { with } \lambda=1 . \\
\left(P_{2}-\lambda I\right) \boldsymbol{v}_{2}+Q_{1} \boldsymbol{v}_{1}=0 \\
\Longleftrightarrow\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 4 \\
0 & 0 & 3
\end{array}\right] \boldsymbol{v}_{2}=-\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-2 \\
0
\end{array}\right] \\
\Longrightarrow \boldsymbol{v}_{1}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} .
\end{gathered}
$$

We also check that
$Q_{2} \boldsymbol{v}_{2}+R_{1} \boldsymbol{v}_{1}=\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{cc}1 & 0 \\ 1 & -1 \\ 1 & -1 \\ 0 & -1\end{array}\right]\left[\begin{array}{c}-2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
and $R_{2} \boldsymbol{v}_{2}=\left[\begin{array}{ccc}2 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & -2 \\ 0 & 0 & -2 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
Hence, the conserved quantity is given by

$$
\Psi(x, y, t)=e^{-t}(-2 x+x y) .
$$

Lorenz System

- Similarly, we also derived the lattice equations for the Lorenz system. We omit the general C3D case due to their complexity.
- We were also able to recover six known CQs for Lorenz system by solving a sequence of matrix equations.

Drawbacks on the algorithm

However, there are still some potential issues with our algorithm that we hope to improve on:

- At implementation level, it is hard to solve the problem $A \boldsymbol{x}=\boldsymbol{b}$, where A is a rank deficiency matrix but \boldsymbol{b} is in the range of A, ie, a solution \boldsymbol{x} does exist.
- Even if we solve the above problem, there are likely many classes of choices for solution \boldsymbol{x}, and so our algorithm has to search every path that might lead to a CQ. If later we run into the same scenario at higher dimension, it would have "domino effect".
- Our algorithm does not address complex eigenvalues.
- The time complexity is high for search of high-order polynomial CQ.

Talk Overview

Motivations

Dynamical systems \& Conserved Quantities

Lattice Method and Algorithm

Examples

Conclusion

Summary

- Introduced the lattice method to find Darboux First Intergals for Q2D and C2D case.
- Presented a general algorithm to find all possible Darboux First Intergals of degree up to n.
- Applied to non-trivial examples, as well as some special systems such as the Lorenz system.
Future work:
- Generalize to system with arbitrary polynomial order
- Look for other types of C.Q.s

Acknowledgement:

- Thank funding support from UNBC ISRA program
- Thank funding support from supervisor's NSERC program

Thank You!

References:

Mark J Ablowitz and Harvey Segur, Solitons and the inverse scattering transform, SIAM, 1981.
M Kus, Integrals of motion for the lorenz system, Journal of Physics A: Mathematical and General 16 (1983), no. 18, L689.

固 Lawrence Perko, Differential equations and dynamical systems, vol. 7, Springer Science \& Business Media, 2013.

Steven H Strogatz, Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering, CRC press, 2001.
Andy TS Wan, Alexander Bihlo, and Jean-Christophe Nave, Conservative methods for dynamical systems, SIAM Journal on Numerical Analysis 55 (2017), no. 5, 2255-2285.

